--- license: apache-2.0 --- ### Important Links 🤖[Github](https://github.com/XGenerationLab/XiYanSQL-QwenCoder) | 🤗[ModelScope](https://modelscope.cn/collections/XiYanSQL-Models-4483337b614241) | 📖[XiYan-SQL](https://github.com/XGenerationLab/XiYan-SQL) | 🌕[析言GBI](https://bailian.console.aliyun.com/xiyan) | 🌞[Modelscope Space](https://www.modelscope.cn/studios/XGenerationLab/XiYanSQL-QwenCoder-32B) ## Introduction We are excited to open source the XiYanSQL-QwenCoder series model, dedicated to advancing the development of LLMs in the text-to-SQL domain. As of now, XiYanSQL-QwenCoder covers four mainstream model sizes: 3B, 7B, 14B, and 32B parameters, to meet the needs of different developers. - The XiYanSQL-QwenCoder model demonstrates strong performance in SQL generation, with the XiYanSQL-QwenCoder-32B achieving a 69.03% EX score on the BIRD TEST set, setting a new SOTA with a single fine-tuned model. Other models in the series also maintain a leading position at their respective sizes. - The XiYanSQL-QwenCoder model supports multiple SQL dialects, such as SQLite, PostgreSQL, and MySQL. - The XiYanSQL-QwenCoder model can be used directly for text-to-SQL tasks or serve as a better starting point for fine-tuning SQL models. ## Model Downloads | **Model** | **Download Latest** | |-----------|------------------| |XiYanSQL-QwenCoder-3B |💻[HuggingFace](https://huggingface.co/XGenerationLab/XiYanSQL-QwenCoder-3B-2502) 🤗[Modelscope](https://www.modelscope.cn/models/XGenerationLab/XiYanSQL-QwenCoder-3B-2502)| |XiYanSQL-QwenCoder-7B |💻[HuggingFace](https://huggingface.co/XGenerationLab/XiYanSQL-QwenCoder-7B-2502) 🤗[Modelscope](https://www.modelscope.cn/models/XGenerationLab/XiYanSQL-QwenCoder-7B-2502)| |XiYanSQL-QwenCoder-14B |💻[HuggingFace](https://huggingface.co/XGenerationLab/XiYanSQL-QwenCoder-14B-2502) 🤗[Modelscope](https://www.modelscope.cn/models/XGenerationLab/XiYanSQL-QwenCoder-14B-2502)| |XiYanSQL-QwenCoder-32B |💻[HuggingFace](https://huggingface.co/XGenerationLab/XiYanSQL-QwenCoder-32B-2412) 🤗[Modelscope](https://www.modelscope.cn/models/XGenerationLab/XiYanSQL-QwenCoder-32B-2412)| ## Performance The XiYanSQL-QwenCoder models, as multi-dialect SQL base models, demonstrating robust SQL generation capabilities. The following presents the evaluation results at the time of release. We conducted a comprehensive evaluation of the model's performance under two schema formats, M-Schema, and original DDL, using the BIRD and Spider benchmarks in the Text-to-SQL domain. | Model name|BIRD Dev@M-Schema |BIRD Dev@DDL|Spider Test@M-Schema|Spider Test@DDL| |-----------|:------------------:|:---------------:|:-------------------:|:---------------:| |Codellama-34b | 33.05% | - | 67.74% | - | |Deepseek-coder-33b | 47.52% | 44.72% | 72.39% | - | |TableGPT2 | 46.35% | 47.07% | 74.76% | 77.28% | |Codestral 22b | 50.52% | 47.00% | 78.45% | 75.47% | |GLM-4-plus | 54.37% | - | 79.40% | - | |Claude35_sonnet-1022 | 53.32% | 50.46% | 76.27% | 73.04% | |Deepseek(v2.5-1210) | 55.74% | 55.61% | 82.08% | 80.57% | |Gemini-1.5-pro | 61.34% | 57.89% | 85.11% | 84.00% | |GPT-4o-0806 | 58.47% | 54.82% | 82.89% | 78.45% | |XiYanSQL-QwenCoder-3B | 54.11% | 53.19% | 82.69% | 78.85% | |XiYanSQL-QwenCoder-7B | 59.78% | 56.58% | 84.86% | 80.31% | |XiYanSQL-QwenCoder-14B | 63.10% | 60.37% | 85.76% | 82.79% | |XiYanSQL-QwenCoder-32B | 67.01% | 63.04% | 88.39% | 85.46% | ## Requirements transformers >= 4.37.0 ## Quickstart Here is a simple code snippet for quickly using **XiYanSQL-QwenCoder** model. We provide a Chinese version of the prompt, and you just need to replace the placeholders for "question," "db_schema," and "evidence" to get started. We recommend using our [M-Schema](https://github.com/XGenerationLab/M-Schema) format for the schema; other formats such as DDL are also acceptable, but they may affect performance. Currently, we mainly support mainstream dialects like SQLite, PostgreSQL, and MySQL. ``` nl2sqlite_template_cn = """你是一名{dialect}专家,现在需要阅读并理解下面的【数据库schema】描述,以及可能用到的【参考信息】,并运用{dialect}知识生成sql语句回答【用户问题】。 【用户问题】 {question} 【数据库schema】 {db_schema} 【参考信息】 {evidence} 【用户问题】 {question} ```sql""" import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "XGenerationLab/XiYanSQL-QwenCoder-32B-2412" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16, device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) ## dialects -> ['SQLite', 'PostgreSQL', 'MySQL'] prompt = nl2sqlite_template_cn.format(dialect="", db_schema="", question="", evidence="") message = [{'role': 'user', 'content': prompt}] text = tokenizer.apply_chat_template( message, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id, max_new_tokens=1024, temperature=0.1, top_p=0.8, do_sample=True, ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` ## Acknowledgments If you find our work useful, please give us a citation or a like, so we can make a greater contribution to the open-source community!