File size: 13,524 Bytes
0467378 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
# -*- coding: utf-8 -*-
# @Time : 2024/7/24 上午11:36
# @Author : xiaoshun
# @Email : [email protected]
# @File : cdnetv1.py
# @Software: PyCharm
"""Cloud detection Network"""
"""Cloud detection Network"""
"""
This is the implementation of CDnetV1 without multi-scale inputs. This implementation uses ResNet by default.
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
affine_par = True
def conv3x3(in_planes, out_planes, stride=1):
"3x3 convolution with padding"
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes, affine=affine_par)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes, affine=affine_par)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, bias=False) # change
self.bn1 = nn.BatchNorm2d(planes, affine=affine_par)
for i in self.bn1.parameters():
i.requires_grad = False
padding = dilation
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, # change
padding=padding, bias=False, dilation=dilation)
self.bn2 = nn.BatchNorm2d(planes, affine=affine_par)
for i in self.bn2.parameters():
i.requires_grad = False
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4, affine=affine_par)
for i in self.bn3.parameters():
i.requires_grad = False
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class Classifier_Module(nn.Module):
def __init__(self, dilation_series, padding_series, num_classes):
super(Classifier_Module, self).__init__()
self.conv2d_list = nn.ModuleList()
for dilation, padding in zip(dilation_series, padding_series):
self.conv2d_list.append(
nn.Conv2d(2048, num_classes, kernel_size=3, stride=1, padding=padding, dilation=dilation, bias=True))
for m in self.conv2d_list:
m.weight.data.normal_(0, 0.01)
def forward(self, x):
out = self.conv2d_list[0](x)
for i in range(len(self.conv2d_list) - 1):
out += self.conv2d_list[i + 1](x)
return out
class _ConvBNReLU(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0,
dilation=1, groups=1, norm_layer=nn.BatchNorm2d):
super(_ConvBNReLU, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias=False)
self.bn = norm_layer(out_channels)
self.relu = nn.ReLU(True)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
return x
class _ASPPConv(nn.Module):
def __init__(self, in_channels, out_channels, atrous_rate, norm_layer):
super(_ASPPConv, self).__init__()
self.block = nn.Sequential(
nn.Conv2d(in_channels, out_channels, 3, padding=atrous_rate, dilation=atrous_rate, bias=False),
norm_layer(out_channels),
nn.ReLU(True)
)
def forward(self, x):
return self.block(x)
class _AsppPooling(nn.Module):
def __init__(self, in_channels, out_channels, norm_layer):
super(_AsppPooling, self).__init__()
self.gap = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(in_channels, out_channels, 1, bias=False),
norm_layer(out_channels),
nn.ReLU(True)
)
def forward(self, x):
size = x.size()[2:]
pool = self.gap(x)
out = F.interpolate(pool, size, mode='bilinear', align_corners=True)
return out
class _ASPP(nn.Module):
def __init__(self, in_channels, atrous_rates, norm_layer):
super(_ASPP, self).__init__()
out_channels = 512 # changed from 256
self.b0 = nn.Sequential(
nn.Conv2d(in_channels, out_channels, 1, bias=False),
norm_layer(out_channels),
nn.ReLU(True)
)
rate1, rate2, rate3 = tuple(atrous_rates)
self.b1 = _ASPPConv(in_channels, out_channels, rate1, norm_layer)
self.b2 = _ASPPConv(in_channels, out_channels, rate2, norm_layer)
self.b3 = _ASPPConv(in_channels, out_channels, rate3, norm_layer)
self.b4 = _AsppPooling(in_channels, out_channels, norm_layer=norm_layer)
# self.project = nn.Sequential(
# nn.Conv2d(5 * out_channels, out_channels, 1, bias=False),
# norm_layer(out_channels),
# nn.ReLU(True),
# nn.Dropout(0.5))
self.dropout2d = nn.Dropout2d(0.3)
def forward(self, x):
feat1 = self.dropout2d(self.b0(x))
feat2 = self.dropout2d(self.b1(x))
feat3 = self.dropout2d(self.b2(x))
feat4 = self.dropout2d(self.b3(x))
feat5 = self.dropout2d(self.b4(x))
x = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
# x = self.project(x)
return x
class _FPM(nn.Module):
def __init__(self, in_channels, num_classes, norm_layer=nn.BatchNorm2d):
super(_FPM, self).__init__()
self.aspp = _ASPP(in_channels, [6, 12, 18], norm_layer=norm_layer)
# self.dropout2d = nn.Dropout2d(0.5)
def forward(self, x):
x = torch.cat((x, self.aspp(x)), dim=1)
# x = self.dropout2d(x) # added
return x
class BR(nn.Module):
def __init__(self, num_classes, stride=1, downsample=None):
super(BR, self).__init__()
self.conv1 = conv3x3(num_classes, num_classes * 16, stride)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(num_classes * 16, num_classes)
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.relu(out)
out = self.conv2(out)
out += residual
return out
class CDnetV1(nn.Module):
def __init__(self, in_channels=3,block=Bottleneck, layers=[3, 4, 6, 3], num_classes=21, aux=True):
self.inplanes = 64
self.aux = aux
super().__init__()
# self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
# self.bn1 = nn.BatchNorm2d(64, affine = affine_par)
self.conv1 = nn.Conv2d(in_channels, 64, kernel_size=3, stride=2, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64, affine=affine_par)
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(64, affine=affine_par)
self.conv3 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn3 = nn.BatchNorm2d(64, affine=affine_par)
for i in self.bn1.parameters():
i.requires_grad = False
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, ceil_mode=True) # change
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=1, dilation=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=4)
# self.layer5 = self._make_pred_layer(Classifier_Module, [6,12,18,24],[6,12,18,24],num_classes)
self.res5_con1x1 = nn.Sequential(
nn.Conv2d(1024 + 2048, 512, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(512),
nn.ReLU(True)
)
self.fpm1 = _FPM(512, num_classes)
self.fpm2 = _FPM(512, num_classes)
self.fpm3 = _FPM(256, num_classes)
self.br1 = BR(num_classes)
self.br2 = BR(num_classes)
self.br3 = BR(num_classes)
self.br4 = BR(num_classes)
self.br5 = BR(num_classes)
self.br6 = BR(num_classes)
self.br7 = BR(num_classes)
self.predict1 = self._predict_layer(512 * 6, num_classes)
self.predict2 = self._predict_layer(512 * 6, num_classes)
self.predict3 = self._predict_layer(512 * 5 + 256, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, 0.01)
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
# for i in m.parameters():
# i.requires_grad = False
def _predict_layer(self, in_channels, num_classes):
return nn.Sequential(nn.Conv2d(in_channels, 256, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(256),
nn.ReLU(True),
nn.Dropout2d(0.1),
nn.Conv2d(256, num_classes, kernel_size=3, stride=1, padding=1, bias=True))
def _make_layer(self, block, planes, blocks, stride=1, dilation=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion or dilation == 2 or dilation == 4:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion, affine=affine_par))
for i in downsample._modules['1'].parameters():
i.requires_grad = False
layers = []
layers.append(block(self.inplanes, planes, stride, dilation=dilation, downsample=downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes, dilation=dilation))
return nn.Sequential(*layers)
# def _make_pred_layer(self,block, dilation_series, padding_series,num_classes):
# return block(dilation_series,padding_series,num_classes)
def base_forward(self, x):
x = self.relu(self.bn1(self.conv1(x)))
size_conv1 = x.size()[2:]
x = self.relu(self.bn2(self.conv2(x)))
x = self.relu(self.bn3(self.conv3(x)))
x = self.maxpool(x)
x = self.layer1(x)
res2 = x
x = self.layer2(x)
res3 = x
x = self.layer3(x)
res4 = x
x = self.layer4(x)
x = self.res5_con1x1(torch.cat([x, res4], dim=1))
return x, res3, res2, size_conv1
def forward(self, x):
size = x.size()[2:]
score1, score2, score3, size_conv1 = self.base_forward(x)
# outputs = list()
score1 = self.fpm1(score1)
score1 = self.predict1(score1) # 1/8
predict1 = score1
score1 = self.br1(score1)
score2 = self.fpm2(score2)
score2 = self.predict2(score2) # 1/8
predict2 = score2
# first fusion
score2 = self.br2(score2) + score1
score2 = self.br3(score2)
score3 = self.fpm3(score3)
score3 = self.predict3(score3) # 1/4
predict3 = score3
score3 = self.br4(score3)
# second fusion
size_score3 = score3.size()[2:]
score3 = score3 + F.interpolate(score2, size_score3, mode='bilinear', align_corners=True)
score3 = self.br5(score3)
# upsampling + BR
score3 = F.interpolate(score3, size_conv1, mode='bilinear', align_corners=True)
score3 = self.br6(score3)
score3 = F.interpolate(score3, size, mode='bilinear', align_corners=True)
score3 = self.br7(score3)
# if self.aux:
# auxout = self.dsn(mid)
# auxout = F.interpolate(auxout, size, mode='bilinear', align_corners=True)
# #outputs.append(auxout)
return score3
# return score3, predict1, predict2, predict3
if __name__ == '__main__':
model = CDnetV1(num_classes=21)
fake_image = torch.randn(2, 3, 224, 224)
outputs = model(fake_image)
for out in outputs:
print(out.shape)
# torch.Size([2, 21, 224, 224])
# torch.Size([2, 21, 29, 29])
# torch.Size([2, 21, 29, 29])
# torch.Size([2, 21, 57, 57]) |