English
File size: 21,810 Bytes
0467378
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
import torch
from torch import nn
from einops import rearrange
from torch import nn, einsum
from einops import rearrange
from mmseg.models.builder import MODELS
import math
import torch
from torch import nn as nn
from mmseg.models.builder import MODELS
from timm.layers import DropPath, trunc_normal_
from typing import List
from timm.layers import create_act_layer
from functools import partial
import torch.nn.functional as F


import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from timm.layers import CondConv2d, get_condconv_initializer, create_conv2d, DropPath, get_norm_act_layer


class LoRaMLP(nn.Module):
    def __init__(self, in_dim, out_dim, rank_dim=8):
        super().__init__()
        self.loramlp = nn.Sequential(
            nn.Linear(in_dim, rank_dim, bias=False),
            nn.Linear(rank_dim, out_dim, bias=False),
        )

    def forward(self, x):
        return self.loramlp(x)


class CrossAttention(nn.Module):
    def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, rank_dim=None):
        super().__init__()
        inner_dim = dim_head * heads  # 512
        context_dim = query_dim if context_dim is None else context_dim

        self.scale = dim_head ** -0.5
        self.heads = heads

        if not rank_dim:
            self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
            self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
            self.to_v = nn.Linear(context_dim, inner_dim, bias=False)

            self.to_out = nn.Linear(inner_dim, query_dim, bias=False)
        else:
            self.to_q = LoRaMLP(query_dim, inner_dim, rank_dim=rank_dim)
            self.to_k = LoRaMLP(context_dim, inner_dim, rank_dim=rank_dim)
            self.to_v = LoRaMLP(context_dim, inner_dim, rank_dim=rank_dim)

            self.to_out = LoRaMLP(inner_dim, query_dim, rank_dim=rank_dim)

    def forward(self, x, context):
        h = self.heads

        q = self.to_q(x)
        k = self.to_k(context)
        v = self.to_v(context)

        q, k, v = map(lambda t: rearrange(
            t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))

        sim = einsum('b i d, b j d -> b i j', q, k) * self.scale

        attn = sim.softmax(dim=-1)

        out = einsum('b i j, b j d -> b i d', attn, v)
        out = rearrange(out, '(b h) n d -> b n (h d)', h=h)

        return self.to_out(out)


def num_groups(group_size, channels):
    if not group_size:
        return 1
    else:
        assert channels % group_size == 0
        return channels // group_size


def _init_weight_goog(m, n='', fix_group_fanout=True):
    if isinstance(m, CondConv2d):
        fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
        if fix_group_fanout:
            fan_out //= m.groups
        init_weight_fn = get_condconv_initializer(
            lambda w: nn.init.normal_(w, 0, math.sqrt(2.0 / fan_out)), m.num_experts, m.weight_shape)
        init_weight_fn(m.weight)
        if m.bias is not None:
            nn.init.zeros_(m.bias)
    elif isinstance(m, nn.Conv2d):
        fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
        if fix_group_fanout:
            fan_out //= m.groups
        nn.init.normal_(m.weight, 0, math.sqrt(2.0 / fan_out))
        if m.bias is not None:
            nn.init.zeros_(m.bias)
    elif isinstance(m, nn.BatchNorm2d):
        nn.init.ones_(m.weight)
        nn.init.zeros_(m.bias)
    elif isinstance(m, nn.Linear):
        fan_out = m.weight.size(0)
        fan_in = 0
        if 'routing_fn' in n:
            fan_in = m.weight.size(1)
        init_range = 1.0 / math.sqrt(fan_in + fan_out)
        nn.init.uniform_(m.weight, -init_range, init_range)
        if m.bias is not None:
            nn.init.zeros_(m.bias)


class DepthwiseSeparableConv(nn.Module):
    def __init__(
            self, in_chs, out_chs, dw_kernel_size=3, stride=1, dilation=1, group_size=1, pad_type='',
            noskip=False, pw_kernel_size=1, pw_act=False, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d,
            se_layer=None, drop_path_rate=0.):
        super(DepthwiseSeparableConv, self).__init__()
        norm_act_layer = get_norm_act_layer(norm_layer)
        groups = num_groups(group_size, in_chs)
        self.has_skip = (stride == 1 and in_chs == out_chs) and not noskip
        self.has_pw_act = pw_act

        self.conv_dw = create_conv2d(
            in_chs, in_chs, dw_kernel_size, stride=stride, dilation=dilation, padding=pad_type, groups=groups)
        self.bn1 = norm_act_layer(in_chs, inplace=True)

        self.se = se_layer(
            in_chs, act_layer=act_layer) if se_layer else nn.Identity()

        self.conv_pw = create_conv2d(
            in_chs, out_chs, pw_kernel_size, padding=pad_type)
        self.bn2 = norm_act_layer(
            out_chs, inplace=True, apply_act=self.has_pw_act)
        self.drop_path = DropPath(
            drop_path_rate) if drop_path_rate else nn.Identity()

    def feature_info(self, location):
        if location == 'expansion':
            return dict(module='conv_pw', hook_type='forward_pre', num_chs=self.conv_pw.in_channels)
        else:
            return dict(module='', hook_type='', num_chs=self.conv_pw.out_channels)

    def forward(self, x):
        shortcut = x
        x = self.conv_dw(x)
        x = self.bn1(x)
        x = self.se(x)
        x = self.conv_pw(x)
        x = self.bn2(x)
        if self.has_skip:
            x = self.drop_path(x) + shortcut
        return x


class PMAAConvBlock(nn.Module):
    def __init__(self, in_channels=3, hidden_channels=256, depth=4, norm=nn.BatchNorm2d, act=nn.ReLU, return_multi_feats=False, return_last_feature=True, has_stem=True, has_block=True):
        super().__init__()
        self.return_last_feature = return_last_feature
        self.depth = depth
        self.has_stem = has_stem
        self.return_multi_feats = return_multi_feats

        self.proj_1x1 = DepthwiseSeparableConv(
            in_channels, hidden_channels, dw_kernel_size=1, norm_layer=norm, act_layer=act)

        self.spp_dw = nn.ModuleList()

        if has_stem:
            self.spp_dw.append(
                DepthwiseSeparableConv(hidden_channels, hidden_channels, dw_kernel_size=3,
                                       stride=1, group_size=hidden_channels, pad_type="same")
            )
        else:
            self.spp_dw.append(nn.Identity())

        if has_block:
            for _ in range(self.depth):
                self.spp_dw.append(
                    DepthwiseSeparableConv(
                        hidden_channels, hidden_channels, dw_kernel_size=3, stride=2, group_size=hidden_channels
                    )
                )
        else:
            for _ in range(self.depth):
                self.spp_dw.append(
                    nn.MaxPool2d(kernel_size=2, stride=2)
                )
        self._init_weights()

    def forward(self, x):
        B, C, H, W = x.shape
        output1 = self.proj_1x1(x)
        output = [self.spp_dw[0](output1)]

        for k in range(1, self.depth+1):
            out_k = self.spp_dw[k](output[-1])
            output.append(out_k)

        if self.return_multi_feats:
            return output[1:]
        else:
            if self.return_last_feature:
                return output[-1]
            global_f = torch.zeros(
                output[-1].shape, requires_grad=True, device=output1.device)
            for fea in output:
                global_f = global_f + F.adaptive_avg_pool2d(
                    fea, output_size=output[-1].shape[-2:]
                )
            return global_f

    def _init_weights(self):
        init_fn = _init_weight_goog
        for n, m in self.named_modules():
            init_fn(m, n)


class ConvnextInteractiveModule(nn.Module):
    def __init__(self, emd_dim=1024, context_dim=256, rank_dim=None):
        super().__init__()
        self.attn = CrossAttention(emd_dim, context_dim, rank_dim=rank_dim)

    def forward(self, x, cache, index):
        # x: 1024 2 1024
        if isinstance(cache, list) or isinstance(cache, tuple):
            # len(cache) 4 cache[4]-23
            # 0-5->0 6-11 -> 1 12-17->2 18-23->3
            cache = cache[index]
        cache = F.interpolate(
            cache, (int(math.sqrt(x.shape[0])), int(math.sqrt(x.shape[0]))), mode="bilinear", align_corners=False
        )
        cache = cache.flatten(2)  # B C N
        cache = cache.permute(2, 0, 1)  # N B C

        # Reshape: batch first
        x = x.permute(1, 0, 2)  # B N C
        cache = cache.permute(1, 0, 2)  # B N C
        return (x + self.attn(x, cache)).permute(1, 0, 2)


class PMAAInteractiveModule(nn.Module):
    def __init__(self,
                 emd_dim=1024,
                 context_dim=64,
                 kernel: int = 1,
                 norm=nn.BatchNorm2d,
                 local_groups=32,
                 global_groups=2,
                 return_multi_feats=False,
                 ):
        super().__init__()
        self.return_multi_feats = return_multi_feats
        self.local_embedding = nn.Sequential(
            nn.Conv2d(emd_dim, emd_dim, kernel, groups=local_groups,
                      padding=int((kernel - 1) / 2), bias=False),
            norm(emd_dim)
        )
        self.global_embedding = nn.Sequential(
            nn.Conv2d(context_dim, emd_dim, kernel, groups=global_groups,
                      padding=int((kernel - 1) / 2), bias=False),
            norm(emd_dim)
        )
        self.global_act = nn.Sequential(
            nn.Conv2d(context_dim, emd_dim, kernel, groups=global_groups,
                      padding=int((kernel - 1) / 2), bias=False),
            norm(emd_dim)
        )
        self.act = nn.Sigmoid()
        self._init_weights()

    def _init_weights(self):
        init_fn = _init_weight_goog
        for n, m in self.named_modules():
            init_fn(m, n)

    def forward(self, x, cache, index):
        if isinstance(cache, list) or isinstance(cache, tuple):
            cache = cache[index]
        N, B, C = x.shape
        H = W = int(math.sqrt(N))
        # reshape x -> B, C, H, W
        x = x.permute(1, 2, 0).reshape(B, C, H, W)
        local_feat = self.local_embedding(x)  # 32
        global_act = self.global_act(cache)
        sig_act = F.interpolate(self.act(global_act), size=(H, W))  # 32

        global_feat = self.global_embedding(cache)
        global_feat = F.interpolate(global_feat, size=(H, W))  # 32

        out = local_feat * sig_act + global_feat

        return out.permute(2, 3, 0, 1).reshape(N, B, C)


class LayerNorm(nn.Module):
    r""" LayerNorm that supports two data formats: channels_last (default) or channels_first. 
    The ordering of the dimensions in the inputs. channels_last corresponds to inputs with 
    shape (batch_size, height, width, channels) while channels_first corresponds to inputs 
    with shape (batch_size, channels, height, width).
    """

    def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(normalized_shape))
        self.bias = nn.Parameter(torch.zeros(normalized_shape))
        self.eps = eps
        self.data_format = data_format
        if self.data_format not in ["channels_last", "channels_first"]:
            raise NotImplementedError
        self.normalized_shape = (normalized_shape, )

    def forward(self, x):
        if self.data_format == "channels_last":
            return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
        elif self.data_format == "channels_first":
            u = x.mean(1, keepdim=True)
            s = (x - u).pow(2).mean(1, keepdim=True)
            x = (x - u) / torch.sqrt(s + self.eps)
            x = self.weight[:, None, None] * x + self.bias[:, None, None]
            return x


class Block(nn.Module):
    r""" ConvNeXt Block. There are two equivalent implementations:
    (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
    (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
    We use (2) as we find it slightly faster in PyTorch

    Args:
        dim (int): Number of input channels.
        drop_path (float): Stochastic depth rate. Default: 0.0
        layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
    """

    def __init__(self, dim, drop_path=0., layer_scale_init_value=1e-6):
        super().__init__()
        self.dwconv = nn.Conv2d(dim, dim, kernel_size=7,
                                padding=3, groups=dim)  # depthwise conv
        self.norm = LayerNorm(dim, eps=1e-6)
        # pointwise/1x1 convs, implemented with linear layers
        self.pwconv1 = nn.Linear(dim, 4 * dim)
        self.act = nn.GELU()
        self.pwconv2 = nn.Linear(4 * dim, dim)
        self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((dim)),
                                  requires_grad=True) if layer_scale_init_value > 0 else None
        self.drop_path = DropPath(
            drop_path) if drop_path > 0. else nn.Identity()

    def forward(self, x):
        input = x
        x = self.dwconv(x)
        x = x.permute(0, 2, 3, 1)  # (N, C, H, W) -> (N, H, W, C)
        x = self.norm(x)
        x = self.pwconv1(x)
        x = self.act(x)
        x = self.pwconv2(x)
        if self.gamma is not None:
            x = self.gamma * x
        x = x.permute(0, 3, 1, 2)  # (N, H, W, C) -> (N, C, H, W)

        x = input + self.drop_path(x)
        return x


class ConvNeXt(nn.Module):
    r""" ConvNeXt
        A PyTorch impl of : `A ConvNet for the 2020s`  -
          https://arxiv.org/pdf/2201.03545.pdf

    Args:
        in_chans (int): Number of input image channels. Default: 3
        num_classes (int): Number of classes for classification head. Default: 1000
        depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]
        dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768]
        drop_path_rate (float): Stochastic depth rate. Default: 0.
        layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
        head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.
    """

    def __init__(self, in_chans=3, depths=[3, 3, 9, 3], dims=[96, 192, 384, 768],
                 drop_path_rate=0., layer_scale_init_value=1e-6, out_indices=[0, 1, 2, 3],
                 return_multi_feats=False,
                 return_last_feature=True
                 ):
        super().__init__()
        self.return_last_feature = return_last_feature
        self.return_multi_feats = return_multi_feats

        # stem and 3 intermediate downsampling conv layers
        self.downsample_layers = nn.ModuleList()
        stem = nn.Sequential(
            nn.Conv2d(in_chans, dims[0], kernel_size=2, stride=2),
            LayerNorm(dims[0], eps=1e-6, data_format="channels_first")
        )
        self.downsample_layers.append(stem)
        for i in range(3):
            downsample_layer = nn.Sequential(
                LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
                nn.Conv2d(dims[i], dims[i+1], kernel_size=2, stride=2),
            )
            self.downsample_layers.append(downsample_layer)

        # 4 feature resolution stages, each consisting of multiple residual blocks
        self.stages = nn.ModuleList()
        dp_rates = [x.item()
                    for x in torch.linspace(0, drop_path_rate, sum(depths))]
        cur = 0
        for i in range(4):
            stage = nn.Sequential(
                *[Block(dim=dims[i], drop_path=dp_rates[cur + j],
                        layer_scale_init_value=layer_scale_init_value) for j in range(depths[i])]
            )
            self.stages.append(stage)
            cur += depths[i]

        self.out_indices = out_indices

        norm_layer = partial(LayerNorm, eps=1e-6, data_format="channels_first")
        for i_layer in range(4):
            layer = norm_layer(dims[i_layer])
            layer_name = f'norm{i_layer}'
            self.add_module(layer_name, layer)

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, (nn.Conv2d, nn.Linear)):
            trunc_normal_(m.weight, std=.02)
            nn.init.constant_(m.bias, 0)

    def init_weights(self, pretrained=None):
        """Initialize the weights in backbone.
        Args:
            pretrained (str, optional): Path to pre-trained weights.
                Defaults to None.
        """

        def _init_weights(m):
            if isinstance(m, nn.Linear):
                trunc_normal_(m.weight, std=.02)
                if isinstance(m, nn.Linear) and m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.LayerNorm):
                nn.init.constant_(m.bias, 0)
                nn.init.constant_(m.weight, 1.0)

        if isinstance(pretrained, str):
            self.apply(_init_weights)
            # logger = get_root_logger()
            # load_checkpoint(self, pretrained, strict=False, logger=logger)
        elif pretrained is None:
            self.apply(_init_weights)
        else:
            raise TypeError('pretrained must be a str or None')

    def forward_features(self, x):
        outs = []
        for i in range(4):
            x = self.downsample_layers[i](x)
            x = self.stages[i](x)
            if i in self.out_indices:
                norm_layer = getattr(self, f'norm{i}')
                x_out = norm_layer(x)
                outs.append(x_out)
        if self.return_multi_feats:
            return tuple(outs)
        if self.return_last_feature:
            return outs[-1]
        global_f = torch.zeros(
            outs[-1].shape, requires_grad=True, device=outs[-1].device)
        for fea in outs:
            global_f = global_f + F.adaptive_avg_pool2d(
                fea, output_size=outs[-1].shape[-2:]
            )
        return global_f

    def forward(self, x):
        x = self.forward_features(x)
        return x


class NoAdaptingModule(nn.Identity):
    def __init__(self):
        super().__init__()

    def forward(self, x, cache, layer):
        return x


@MODELS.register_module()
class CloudAdapter(nn.Module):
    def __init__(self,
                 cnn_type="convnext",  # convnext or mobilenet
                 int_type="convnext",  # cross_attention or
                 # 共同的参数 start
                 emd_dim=1024,
                 num_layers=24,

                 # 先判断是否返回多特征,之后再判断是否进行特征融合
                 return_multi_feats=True,
                 return_last_feature=False,

                 # 共同的参数 end

                 # pmaa 提取单个特征 or 多尺寸特征 start
                 hidden_channels=256,
                 depth=4,
                 norm=nn.BatchNorm2d,
                 act=nn.ReLU,
                 # pmaa 提取单个特征 or 多尺寸特征 end

                 # pmaa net start
                 local_groups=1,
                 global_groups=1,
                 # pmaa net end

                 # convnext 提取单个特征 or 多尺寸特征 start
                 context_dim=256,
                 rank_dim=None,
                 # convnext 提取单个特征 or 多尺寸特征 end,
                 has_stem=True,
                 has_block=True,
                 ):
        super().__init__()
        self.cnn = nn.Identity()
        self.net = nn.Identity()
        if cnn_type == "pmaa":
            self.cnn = PMAAConvBlock(
                hidden_channels=hidden_channels,
                depth=depth,
                norm=norm,
                act=act,
                return_multi_feats=return_multi_feats,
                return_last_feature=return_last_feature,
                has_stem=has_stem,
                has_block=has_block
            )
        elif cnn_type == "convnext":
            self.cnn = ConvNeXt(depths=[1]*4,
                                dims=[context_dim]*4,
                                return_multi_feats=return_multi_feats,
                                return_last_feature=return_last_feature
                                )

        else:
            raise ValueError(
                f"cnn_type must in ['convnext','pmaa'],but got {cnn_type}")

        if int_type == "convnext":
            self.net = nn.ModuleList(
                ConvnextInteractiveModule(emd_dim, context_dim, rank_dim)
                for _ in range(num_layers)
            )
        elif int_type == "pmaa":
            self.net = nn.ModuleList(
                PMAAInteractiveModule(
                    emd_dim, context_dim, local_groups=local_groups, global_groups=global_groups)
                for _ in range(num_layers)
            )

        elif int_type == "no_adapting":
            self.net = nn.ModuleList(
                NoAdaptingModule() for _ in range(num_layers)
            )
        else:
            raise ValueError(
                f"int_type must in ['convnext','pmaa'],but got {int_type}")

    def forward(self, feats, layer, batch_first=True, has_cls_token=True, cache=None):
        if batch_first:
            feats = feats.permute(1, 0, 2)  # 1025 2 1024
        if has_cls_token:
            cls_token, feats = torch.tensor_split(feats, [1], dim=0)
        # 24 // 1
        # feat: 1024 2 1024
        feats = self.net[layer].forward(
            feats, cache, layer//(len(self.net) // 4))

        if has_cls_token:
            feats = torch.cat([cls_token, feats], dim=0)
        if batch_first:
            feats = feats.permute(1, 0, 2)
        return feats