English
File size: 9,614 Bytes
0467378
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the Apache License, Version 2.0
# found in the LICENSE file in the root directory of this source tree.

# References:
#   https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
#   https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/patch_embed.py

import logging
import os
from typing import Callable, List, Any, Tuple, Dict
import warnings

import torch
from torch import nn, Tensor

from .attention import Attention, MemEffAttention
from .drop_path import DropPath
from .layer_scale import LayerScale
from .mlp import Mlp


logger = logging.getLogger("dinov2")


XFORMERS_ENABLED = os.environ.get("XFORMERS_DISABLED") is None
try:
    if XFORMERS_ENABLED:
        from xformers.ops import fmha, scaled_index_add, index_select_cat

        XFORMERS_AVAILABLE = True
        warnings.warn("xFormers is available (Block)")
    else:
        warnings.warn("xFormers is disabled (Block)")
        raise ImportError
except ImportError:
    XFORMERS_AVAILABLE = False

    warnings.warn("xFormers is not available (Block)")


class Block(nn.Module):
    def __init__(
        self,
        dim: int,
        num_heads: int,
        mlp_ratio: float = 4.0,
        qkv_bias: bool = False,
        proj_bias: bool = True,
        ffn_bias: bool = True,
        drop: float = 0.0,
        attn_drop: float = 0.0,
        init_values=None,
        drop_path: float = 0.0,
        act_layer: Callable[..., nn.Module] = nn.GELU,
        norm_layer: Callable[..., nn.Module] = nn.LayerNorm,
        attn_class: Callable[..., nn.Module] = Attention,
        ffn_layer: Callable[..., nn.Module] = Mlp,
    ) -> None:
        super().__init__()
        # print(f"biases: qkv: {qkv_bias}, proj: {proj_bias}, ffn: {ffn_bias}")
        self.norm1 = norm_layer(dim)
        self.attn = attn_class(
            dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            proj_bias=proj_bias,
            attn_drop=attn_drop,
            proj_drop=drop,
        )
        self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
        self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()

        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = ffn_layer(
            in_features=dim,
            hidden_features=mlp_hidden_dim,
            act_layer=act_layer,
            drop=drop,
            bias=ffn_bias,
        )
        self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
        self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()

        self.sample_drop_ratio = drop_path

    def forward(self, x: Tensor) -> Tensor:
        def attn_residual_func(x: Tensor) -> Tensor:
            return self.ls1(self.attn(self.norm1(x)))

        def ffn_residual_func(x: Tensor) -> Tensor:
            return self.ls2(self.mlp(self.norm2(x)))

        if self.training and self.sample_drop_ratio > 0.1:
            # the overhead is compensated only for a drop path rate larger than 0.1
            x = drop_add_residual_stochastic_depth(
                x,
                residual_func=attn_residual_func,
                sample_drop_ratio=self.sample_drop_ratio,
            )
            x = drop_add_residual_stochastic_depth(
                x,
                residual_func=ffn_residual_func,
                sample_drop_ratio=self.sample_drop_ratio,
            )
        elif self.training and self.sample_drop_ratio > 0.0:
            x = x + self.drop_path1(attn_residual_func(x))
            x = x + self.drop_path1(ffn_residual_func(x))  # FIXME: drop_path2
        else:
            x = x + attn_residual_func(x)
            x = x + ffn_residual_func(x)
        return x


def drop_add_residual_stochastic_depth(
    x: Tensor,
    residual_func: Callable[[Tensor], Tensor],
    sample_drop_ratio: float = 0.0,
) -> Tensor:
    # 1) extract subset using permutation
    b, n, d = x.shape
    sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1)
    brange = (torch.randperm(b, device=x.device))[:sample_subset_size]
    x_subset = x[brange]

    # 2) apply residual_func to get residual
    residual = residual_func(x_subset)

    x_flat = x.flatten(1)
    residual = residual.flatten(1)

    residual_scale_factor = b / sample_subset_size

    # 3) add the residual
    x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor)
    return x_plus_residual.view_as(x)


def get_branges_scales(x, sample_drop_ratio=0.0):
    b, n, d = x.shape
    sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1)
    brange = (torch.randperm(b, device=x.device))[:sample_subset_size]
    residual_scale_factor = b / sample_subset_size
    return brange, residual_scale_factor


def add_residual(x, brange, residual, residual_scale_factor, scaling_vector=None):
    if scaling_vector is None:
        x_flat = x.flatten(1)
        residual = residual.flatten(1)
        x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor)
    else:
        x_plus_residual = scaled_index_add(
            x, brange, residual.to(dtype=x.dtype), scaling=scaling_vector, alpha=residual_scale_factor
        )
    return x_plus_residual


attn_bias_cache: Dict[Tuple, Any] = {}


def get_attn_bias_and_cat(x_list, branges=None):
    """
    this will perform the index select, cat the tensors, and provide the attn_bias from cache
    """
    batch_sizes = [b.shape[0] for b in branges] if branges is not None else [x.shape[0] for x in x_list]
    all_shapes = tuple((b, x.shape[1]) for b, x in zip(batch_sizes, x_list))
    if all_shapes not in attn_bias_cache.keys():
        seqlens = []
        for b, x in zip(batch_sizes, x_list):
            for _ in range(b):
                seqlens.append(x.shape[1])
        attn_bias = fmha.BlockDiagonalMask.from_seqlens(seqlens)
        attn_bias._batch_sizes = batch_sizes
        attn_bias_cache[all_shapes] = attn_bias

    if branges is not None:
        cat_tensors = index_select_cat([x.flatten(1) for x in x_list], branges).view(1, -1, x_list[0].shape[-1])
    else:
        tensors_bs1 = tuple(x.reshape([1, -1, *x.shape[2:]]) for x in x_list)
        cat_tensors = torch.cat(tensors_bs1, dim=1)

    return attn_bias_cache[all_shapes], cat_tensors


def drop_add_residual_stochastic_depth_list(
    x_list: List[Tensor],
    residual_func: Callable[[Tensor, Any], Tensor],
    sample_drop_ratio: float = 0.0,
    scaling_vector=None,
) -> Tensor:
    # 1) generate random set of indices for dropping samples in the batch
    branges_scales = [get_branges_scales(x, sample_drop_ratio=sample_drop_ratio) for x in x_list]
    branges = [s[0] for s in branges_scales]
    residual_scale_factors = [s[1] for s in branges_scales]

    # 2) get attention bias and index+concat the tensors
    attn_bias, x_cat = get_attn_bias_and_cat(x_list, branges)

    # 3) apply residual_func to get residual, and split the result
    residual_list = attn_bias.split(residual_func(x_cat, attn_bias=attn_bias))  # type: ignore

    outputs = []
    for x, brange, residual, residual_scale_factor in zip(x_list, branges, residual_list, residual_scale_factors):
        outputs.append(add_residual(x, brange, residual, residual_scale_factor, scaling_vector).view_as(x))
    return outputs


class NestedTensorBlock(Block):
    def forward_nested(self, x_list: List[Tensor]) -> List[Tensor]:
        """
        x_list contains a list of tensors to nest together and run
        """
        assert isinstance(self.attn, MemEffAttention)

        if self.training and self.sample_drop_ratio > 0.0:

            def attn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
                return self.attn(self.norm1(x), attn_bias=attn_bias)

            def ffn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
                return self.mlp(self.norm2(x))

            x_list = drop_add_residual_stochastic_depth_list(
                x_list,
                residual_func=attn_residual_func,
                sample_drop_ratio=self.sample_drop_ratio,
                scaling_vector=self.ls1.gamma if isinstance(self.ls1, LayerScale) else None,
            )
            x_list = drop_add_residual_stochastic_depth_list(
                x_list,
                residual_func=ffn_residual_func,
                sample_drop_ratio=self.sample_drop_ratio,
                scaling_vector=self.ls2.gamma if isinstance(self.ls1, LayerScale) else None,
            )
            return x_list
        else:

            def attn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
                return self.ls1(self.attn(self.norm1(x), attn_bias=attn_bias))

            def ffn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
                return self.ls2(self.mlp(self.norm2(x)))

            attn_bias, x = get_attn_bias_and_cat(x_list)
            x = x + attn_residual_func(x, attn_bias=attn_bias)
            x = x + ffn_residual_func(x)
            return attn_bias.split(x)

    def forward(self, x_or_x_list):
        if isinstance(x_or_x_list, Tensor):
            return super().forward(x_or_x_list)
        elif isinstance(x_or_x_list, list):
            if not XFORMERS_AVAILABLE:
                raise AssertionError("xFormers is required for using nested tensors")
            return self.forward_nested(x_or_x_list)
        else:
            raise AssertionError