English
File size: 5,698 Bytes
0467378
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
crop_size = (
    512,
    512,
)
model = dict(
    backbone=dict(
        adapter_index=[
            0,
            1,
            2,
            3,
            4,
            5,
            6,
            7,
            8,
            9,
            10,
            11,
            12,
            13,
            14,
            15,
            16,
            17,
            18,
            19,
            20,
            21,
            22,
            23,
        ],
        block_chunks=0,
        depth=24,
        embed_dim=1024,
        ffn_bias=True,
        ffn_layer='mlp',
        has_cat=False,
        img_size=512,
        init_values=1e-05,
        mlp_ratio=4,
        num_heads=16,
        cloud_adapter_config=dict(
            cnn_type='pmaa',
            context_dim=64,
            depth=4,
            emd_dim=1024,
            global_groups=1,
            hidden_channels=64,
            int_type='convnext',
            local_groups=1,
            num_layers=24,
            rank_dim=16,
            return_last_feature=False,
            return_multi_feats=False,
            type='CloudAdapter'),
        patch_size=16,
        proj_bias=True,
        qkv_bias=True,
        type='CloudAdapterDinoVisionTransformer'),
    data_preprocessor=dict(
        bgr_to_rgb=True,
        mean=[
            123.675,
            116.28,
            103.53,
        ],
        pad_val=0,
        seg_pad_val=255,
        size=(
            512,
            512,
        ),
        std=[
            58.395,
            57.12,
            57.375,
        ],
        type='SegDataPreProcessor'),
    decode_head=dict(
        align_corners=False,
        enforce_decoder_input_project=False,
        feat_channels=256,
        in_channels=[
            1024,
            1024,
            1024,
            1024,
        ],
        loss_cls=dict(
            class_weight=[
                1.0,
                1.0,
                1.0,
                1.0,
                0.1,
            ],
            loss_weight=2.0,
            reduction='mean',
            type='mmdet.CrossEntropyLoss',
            use_sigmoid=False),
        loss_dice=dict(
            activate=True,
            eps=1.0,
            loss_weight=5.0,
            naive_dice=True,
            reduction='mean',
            type='mmdet.DiceLoss',
            use_sigmoid=True),
        loss_mask=dict(
            loss_weight=5.0,
            reduction='mean',
            type='mmdet.CrossEntropyLoss',
            use_sigmoid=True),
        num_classes=4,
        num_queries=100,
        num_transformer_feat_level=3,
        out_channels=256,
        pixel_decoder=dict(
            act_cfg=dict(type='ReLU'),
            encoder=dict(
                init_cfg=None,
                layer_cfg=dict(
                    ffn_cfg=dict(
                        act_cfg=dict(inplace=True, type='ReLU'),
                        embed_dims=256,
                        feedforward_channels=1024,
                        ffn_drop=0.0,
                        num_fcs=2),
                    self_attn_cfg=dict(
                        batch_first=True,
                        dropout=0.0,
                        embed_dims=256,
                        im2col_step=64,
                        init_cfg=None,
                        norm_cfg=None,
                        num_heads=8,
                        num_levels=3,
                        num_points=4)),
                num_layers=6),
            init_cfg=None,
            norm_cfg=dict(num_groups=32, type='GN'),
            num_outs=3,
            positional_encoding=dict(normalize=True, num_feats=128),
            type='mmdet.MSDeformAttnPixelDecoder'),
        positional_encoding=dict(normalize=True, num_feats=128),
        strides=[
            4,
            8,
            16,
            32,
        ],
        train_cfg=dict(
            assigner=dict(
                match_costs=[
                    dict(type='mmdet.ClassificationCost', weight=2.0),
                    dict(
                        type='mmdet.CrossEntropyLossCost',
                        use_sigmoid=True,
                        weight=5.0),
                    dict(
                        eps=1.0,
                        pred_act=True,
                        type='mmdet.DiceCost',
                        weight=5.0),
                ],
                type='mmdet.HungarianAssigner'),
            importance_sample_ratio=0.75,
            num_points=12544,
            oversample_ratio=3.0,
            sampler=dict(type='mmdet.MaskPseudoSampler')),
        transformer_decoder=dict(
            init_cfg=None,
            layer_cfg=dict(
                cross_attn_cfg=dict(
                    attn_drop=0.0,
                    batch_first=True,
                    dropout_layer=None,
                    embed_dims=256,
                    num_heads=8,
                    proj_drop=0.0),
                ffn_cfg=dict(
                    act_cfg=dict(inplace=True, type='ReLU'),
                    add_identity=True,
                    dropout_layer=None,
                    embed_dims=256,
                    feedforward_channels=2048,
                    ffn_drop=0.0,
                    num_fcs=2),
                self_attn_cfg=dict(
                    attn_drop=0.0,
                    batch_first=True,
                    dropout_layer=None,
                    embed_dims=256,
                    num_heads=8,
                    proj_drop=0.0)),
            num_layers=9,
            return_intermediate=True),
        type='Mask2FormerHead'),
    test_cfg=dict(mode='whole'),
    train_cfg=dict(),
    type='EncoderDecoder')