English
XavierJiezou's picture
Add files using upload-large-folder tool
0467378 verified
raw
history blame
21.8 kB
import torch
from torch import nn
from einops import rearrange
from torch import nn, einsum
from einops import rearrange
from mmseg.models.builder import MODELS
import math
import torch
from torch import nn as nn
from mmseg.models.builder import MODELS
from timm.layers import DropPath, trunc_normal_
from typing import List
from timm.layers import create_act_layer
from functools import partial
import torch.nn.functional as F
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from timm.layers import CondConv2d, get_condconv_initializer, create_conv2d, DropPath, get_norm_act_layer
class LoRaMLP(nn.Module):
def __init__(self, in_dim, out_dim, rank_dim=8):
super().__init__()
self.loramlp = nn.Sequential(
nn.Linear(in_dim, rank_dim, bias=False),
nn.Linear(rank_dim, out_dim, bias=False),
)
def forward(self, x):
return self.loramlp(x)
class CrossAttention(nn.Module):
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, rank_dim=None):
super().__init__()
inner_dim = dim_head * heads # 512
context_dim = query_dim if context_dim is None else context_dim
self.scale = dim_head ** -0.5
self.heads = heads
if not rank_dim:
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
self.to_out = nn.Linear(inner_dim, query_dim, bias=False)
else:
self.to_q = LoRaMLP(query_dim, inner_dim, rank_dim=rank_dim)
self.to_k = LoRaMLP(context_dim, inner_dim, rank_dim=rank_dim)
self.to_v = LoRaMLP(context_dim, inner_dim, rank_dim=rank_dim)
self.to_out = LoRaMLP(inner_dim, query_dim, rank_dim=rank_dim)
def forward(self, x, context):
h = self.heads
q = self.to_q(x)
k = self.to_k(context)
v = self.to_v(context)
q, k, v = map(lambda t: rearrange(
t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
attn = sim.softmax(dim=-1)
out = einsum('b i j, b j d -> b i d', attn, v)
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
return self.to_out(out)
def num_groups(group_size, channels):
if not group_size:
return 1
else:
assert channels % group_size == 0
return channels // group_size
def _init_weight_goog(m, n='', fix_group_fanout=True):
if isinstance(m, CondConv2d):
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
if fix_group_fanout:
fan_out //= m.groups
init_weight_fn = get_condconv_initializer(
lambda w: nn.init.normal_(w, 0, math.sqrt(2.0 / fan_out)), m.num_experts, m.weight_shape)
init_weight_fn(m.weight)
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Conv2d):
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
if fix_group_fanout:
fan_out //= m.groups
nn.init.normal_(m.weight, 0, math.sqrt(2.0 / fan_out))
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.BatchNorm2d):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
fan_out = m.weight.size(0)
fan_in = 0
if 'routing_fn' in n:
fan_in = m.weight.size(1)
init_range = 1.0 / math.sqrt(fan_in + fan_out)
nn.init.uniform_(m.weight, -init_range, init_range)
if m.bias is not None:
nn.init.zeros_(m.bias)
class DepthwiseSeparableConv(nn.Module):
def __init__(
self, in_chs, out_chs, dw_kernel_size=3, stride=1, dilation=1, group_size=1, pad_type='',
noskip=False, pw_kernel_size=1, pw_act=False, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d,
se_layer=None, drop_path_rate=0.):
super(DepthwiseSeparableConv, self).__init__()
norm_act_layer = get_norm_act_layer(norm_layer)
groups = num_groups(group_size, in_chs)
self.has_skip = (stride == 1 and in_chs == out_chs) and not noskip
self.has_pw_act = pw_act
self.conv_dw = create_conv2d(
in_chs, in_chs, dw_kernel_size, stride=stride, dilation=dilation, padding=pad_type, groups=groups)
self.bn1 = norm_act_layer(in_chs, inplace=True)
self.se = se_layer(
in_chs, act_layer=act_layer) if se_layer else nn.Identity()
self.conv_pw = create_conv2d(
in_chs, out_chs, pw_kernel_size, padding=pad_type)
self.bn2 = norm_act_layer(
out_chs, inplace=True, apply_act=self.has_pw_act)
self.drop_path = DropPath(
drop_path_rate) if drop_path_rate else nn.Identity()
def feature_info(self, location):
if location == 'expansion':
return dict(module='conv_pw', hook_type='forward_pre', num_chs=self.conv_pw.in_channels)
else:
return dict(module='', hook_type='', num_chs=self.conv_pw.out_channels)
def forward(self, x):
shortcut = x
x = self.conv_dw(x)
x = self.bn1(x)
x = self.se(x)
x = self.conv_pw(x)
x = self.bn2(x)
if self.has_skip:
x = self.drop_path(x) + shortcut
return x
class PMAAConvBlock(nn.Module):
def __init__(self, in_channels=3, hidden_channels=256, depth=4, norm=nn.BatchNorm2d, act=nn.ReLU, return_multi_feats=False, return_last_feature=True, has_stem=True, has_block=True):
super().__init__()
self.return_last_feature = return_last_feature
self.depth = depth
self.has_stem = has_stem
self.return_multi_feats = return_multi_feats
self.proj_1x1 = DepthwiseSeparableConv(
in_channels, hidden_channels, dw_kernel_size=1, norm_layer=norm, act_layer=act)
self.spp_dw = nn.ModuleList()
if has_stem:
self.spp_dw.append(
DepthwiseSeparableConv(hidden_channels, hidden_channels, dw_kernel_size=3,
stride=1, group_size=hidden_channels, pad_type="same")
)
else:
self.spp_dw.append(nn.Identity())
if has_block:
for _ in range(self.depth):
self.spp_dw.append(
DepthwiseSeparableConv(
hidden_channels, hidden_channels, dw_kernel_size=3, stride=2, group_size=hidden_channels
)
)
else:
for _ in range(self.depth):
self.spp_dw.append(
nn.MaxPool2d(kernel_size=2, stride=2)
)
self._init_weights()
def forward(self, x):
B, C, H, W = x.shape
output1 = self.proj_1x1(x)
output = [self.spp_dw[0](output1)]
for k in range(1, self.depth+1):
out_k = self.spp_dw[k](output[-1])
output.append(out_k)
if self.return_multi_feats:
return output[1:]
else:
if self.return_last_feature:
return output[-1]
global_f = torch.zeros(
output[-1].shape, requires_grad=True, device=output1.device)
for fea in output:
global_f = global_f + F.adaptive_avg_pool2d(
fea, output_size=output[-1].shape[-2:]
)
return global_f
def _init_weights(self):
init_fn = _init_weight_goog
for n, m in self.named_modules():
init_fn(m, n)
class ConvnextInteractiveModule(nn.Module):
def __init__(self, emd_dim=1024, context_dim=256, rank_dim=None):
super().__init__()
self.attn = CrossAttention(emd_dim, context_dim, rank_dim=rank_dim)
def forward(self, x, cache, index):
# x: 1024 2 1024
if isinstance(cache, list) or isinstance(cache, tuple):
# len(cache) 4 cache[4]-23
# 0-5->0 6-11 -> 1 12-17->2 18-23->3
cache = cache[index]
cache = F.interpolate(
cache, (int(math.sqrt(x.shape[0])), int(math.sqrt(x.shape[0]))), mode="bilinear", align_corners=False
)
cache = cache.flatten(2) # B C N
cache = cache.permute(2, 0, 1) # N B C
# Reshape: batch first
x = x.permute(1, 0, 2) # B N C
cache = cache.permute(1, 0, 2) # B N C
return (x + self.attn(x, cache)).permute(1, 0, 2)
class PMAAInteractiveModule(nn.Module):
def __init__(self,
emd_dim=1024,
context_dim=64,
kernel: int = 1,
norm=nn.BatchNorm2d,
local_groups=32,
global_groups=2,
return_multi_feats=False,
):
super().__init__()
self.return_multi_feats = return_multi_feats
self.local_embedding = nn.Sequential(
nn.Conv2d(emd_dim, emd_dim, kernel, groups=local_groups,
padding=int((kernel - 1) / 2), bias=False),
norm(emd_dim)
)
self.global_embedding = nn.Sequential(
nn.Conv2d(context_dim, emd_dim, kernel, groups=global_groups,
padding=int((kernel - 1) / 2), bias=False),
norm(emd_dim)
)
self.global_act = nn.Sequential(
nn.Conv2d(context_dim, emd_dim, kernel, groups=global_groups,
padding=int((kernel - 1) / 2), bias=False),
norm(emd_dim)
)
self.act = nn.Sigmoid()
self._init_weights()
def _init_weights(self):
init_fn = _init_weight_goog
for n, m in self.named_modules():
init_fn(m, n)
def forward(self, x, cache, index):
if isinstance(cache, list) or isinstance(cache, tuple):
cache = cache[index]
N, B, C = x.shape
H = W = int(math.sqrt(N))
# reshape x -> B, C, H, W
x = x.permute(1, 2, 0).reshape(B, C, H, W)
local_feat = self.local_embedding(x) # 32
global_act = self.global_act(cache)
sig_act = F.interpolate(self.act(global_act), size=(H, W)) # 32
global_feat = self.global_embedding(cache)
global_feat = F.interpolate(global_feat, size=(H, W)) # 32
out = local_feat * sig_act + global_feat
return out.permute(2, 3, 0, 1).reshape(N, B, C)
class LayerNorm(nn.Module):
r""" LayerNorm that supports two data formats: channels_last (default) or channels_first.
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
with shape (batch_size, channels, height, width).
"""
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
super().__init__()
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.eps = eps
self.data_format = data_format
if self.data_format not in ["channels_last", "channels_first"]:
raise NotImplementedError
self.normalized_shape = (normalized_shape, )
def forward(self, x):
if self.data_format == "channels_last":
return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
elif self.data_format == "channels_first":
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
class Block(nn.Module):
r""" ConvNeXt Block. There are two equivalent implementations:
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
We use (2) as we find it slightly faster in PyTorch
Args:
dim (int): Number of input channels.
drop_path (float): Stochastic depth rate. Default: 0.0
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
"""
def __init__(self, dim, drop_path=0., layer_scale_init_value=1e-6):
super().__init__()
self.dwconv = nn.Conv2d(dim, dim, kernel_size=7,
padding=3, groups=dim) # depthwise conv
self.norm = LayerNorm(dim, eps=1e-6)
# pointwise/1x1 convs, implemented with linear layers
self.pwconv1 = nn.Linear(dim, 4 * dim)
self.act = nn.GELU()
self.pwconv2 = nn.Linear(4 * dim, dim)
self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((dim)),
requires_grad=True) if layer_scale_init_value > 0 else None
self.drop_path = DropPath(
drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x):
input = x
x = self.dwconv(x)
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
x = self.norm(x)
x = self.pwconv1(x)
x = self.act(x)
x = self.pwconv2(x)
if self.gamma is not None:
x = self.gamma * x
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
x = input + self.drop_path(x)
return x
class ConvNeXt(nn.Module):
r""" ConvNeXt
A PyTorch impl of : `A ConvNet for the 2020s` -
https://arxiv.org/pdf/2201.03545.pdf
Args:
in_chans (int): Number of input image channels. Default: 3
num_classes (int): Number of classes for classification head. Default: 1000
depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]
dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768]
drop_path_rate (float): Stochastic depth rate. Default: 0.
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.
"""
def __init__(self, in_chans=3, depths=[3, 3, 9, 3], dims=[96, 192, 384, 768],
drop_path_rate=0., layer_scale_init_value=1e-6, out_indices=[0, 1, 2, 3],
return_multi_feats=False,
return_last_feature=True
):
super().__init__()
self.return_last_feature = return_last_feature
self.return_multi_feats = return_multi_feats
# stem and 3 intermediate downsampling conv layers
self.downsample_layers = nn.ModuleList()
stem = nn.Sequential(
nn.Conv2d(in_chans, dims[0], kernel_size=2, stride=2),
LayerNorm(dims[0], eps=1e-6, data_format="channels_first")
)
self.downsample_layers.append(stem)
for i in range(3):
downsample_layer = nn.Sequential(
LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
nn.Conv2d(dims[i], dims[i+1], kernel_size=2, stride=2),
)
self.downsample_layers.append(downsample_layer)
# 4 feature resolution stages, each consisting of multiple residual blocks
self.stages = nn.ModuleList()
dp_rates = [x.item()
for x in torch.linspace(0, drop_path_rate, sum(depths))]
cur = 0
for i in range(4):
stage = nn.Sequential(
*[Block(dim=dims[i], drop_path=dp_rates[cur + j],
layer_scale_init_value=layer_scale_init_value) for j in range(depths[i])]
)
self.stages.append(stage)
cur += depths[i]
self.out_indices = out_indices
norm_layer = partial(LayerNorm, eps=1e-6, data_format="channels_first")
for i_layer in range(4):
layer = norm_layer(dims[i_layer])
layer_name = f'norm{i_layer}'
self.add_module(layer_name, layer)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, (nn.Conv2d, nn.Linear)):
trunc_normal_(m.weight, std=.02)
nn.init.constant_(m.bias, 0)
def init_weights(self, pretrained=None):
"""Initialize the weights in backbone.
Args:
pretrained (str, optional): Path to pre-trained weights.
Defaults to None.
"""
def _init_weights(m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
if isinstance(pretrained, str):
self.apply(_init_weights)
# logger = get_root_logger()
# load_checkpoint(self, pretrained, strict=False, logger=logger)
elif pretrained is None:
self.apply(_init_weights)
else:
raise TypeError('pretrained must be a str or None')
def forward_features(self, x):
outs = []
for i in range(4):
x = self.downsample_layers[i](x)
x = self.stages[i](x)
if i in self.out_indices:
norm_layer = getattr(self, f'norm{i}')
x_out = norm_layer(x)
outs.append(x_out)
if self.return_multi_feats:
return tuple(outs)
if self.return_last_feature:
return outs[-1]
global_f = torch.zeros(
outs[-1].shape, requires_grad=True, device=outs[-1].device)
for fea in outs:
global_f = global_f + F.adaptive_avg_pool2d(
fea, output_size=outs[-1].shape[-2:]
)
return global_f
def forward(self, x):
x = self.forward_features(x)
return x
class NoAdaptingModule(nn.Identity):
def __init__(self):
super().__init__()
def forward(self, x, cache, layer):
return x
@MODELS.register_module()
class CloudAdapter(nn.Module):
def __init__(self,
cnn_type="convnext", # convnext or mobilenet
int_type="convnext", # cross_attention or
# 共同的参数 start
emd_dim=1024,
num_layers=24,
# 先判断是否返回多特征,之后再判断是否进行特征融合
return_multi_feats=True,
return_last_feature=False,
# 共同的参数 end
# pmaa 提取单个特征 or 多尺寸特征 start
hidden_channels=256,
depth=4,
norm=nn.BatchNorm2d,
act=nn.ReLU,
# pmaa 提取单个特征 or 多尺寸特征 end
# pmaa net start
local_groups=1,
global_groups=1,
# pmaa net end
# convnext 提取单个特征 or 多尺寸特征 start
context_dim=256,
rank_dim=None,
# convnext 提取单个特征 or 多尺寸特征 end,
has_stem=True,
has_block=True,
):
super().__init__()
self.cnn = nn.Identity()
self.net = nn.Identity()
if cnn_type == "pmaa":
self.cnn = PMAAConvBlock(
hidden_channels=hidden_channels,
depth=depth,
norm=norm,
act=act,
return_multi_feats=return_multi_feats,
return_last_feature=return_last_feature,
has_stem=has_stem,
has_block=has_block
)
elif cnn_type == "convnext":
self.cnn = ConvNeXt(depths=[1]*4,
dims=[context_dim]*4,
return_multi_feats=return_multi_feats,
return_last_feature=return_last_feature
)
else:
raise ValueError(
f"cnn_type must in ['convnext','pmaa'],but got {cnn_type}")
if int_type == "convnext":
self.net = nn.ModuleList(
ConvnextInteractiveModule(emd_dim, context_dim, rank_dim)
for _ in range(num_layers)
)
elif int_type == "pmaa":
self.net = nn.ModuleList(
PMAAInteractiveModule(
emd_dim, context_dim, local_groups=local_groups, global_groups=global_groups)
for _ in range(num_layers)
)
elif int_type == "no_adapting":
self.net = nn.ModuleList(
NoAdaptingModule() for _ in range(num_layers)
)
else:
raise ValueError(
f"int_type must in ['convnext','pmaa'],but got {int_type}")
def forward(self, feats, layer, batch_first=True, has_cls_token=True, cache=None):
if batch_first:
feats = feats.permute(1, 0, 2) # 1025 2 1024
if has_cls_token:
cls_token, feats = torch.tensor_split(feats, [1], dim=0)
# 24 // 1
# feat: 1024 2 1024
feats = self.net[layer].forward(
feats, cache, layer//(len(self.net) // 4))
if has_cls_token:
feats = torch.cat([cls_token, feats], dim=0)
if batch_first:
feats = feats.permute(1, 0, 2)
return feats