English
XavierJiezou commited on
Commit
fb38cfb
1 Parent(s): e09216f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -23
README.md CHANGED
@@ -29,43 +29,32 @@ pip install -r requirements.txt
29
 
30
  The pre-trained model weights are available in the repository. Download the weights and place them in the appropriate directory.
31
 
32
- ```bash
33
- # Example command to download weights
34
- wget <link_to_model_weights>
35
- ```
36
 
37
  ### 2. Run the Gradio Demo
38
 
39
  To interactively test the models using Gradio:
40
 
41
  ```bash
42
- python demo.py
43
  ```
44
 
45
- This will launch a web interface where you can upload remote sensing images and view the segmentation results.
46
-
47
- ### 3. Fine-tune the Model
48
-
49
- You can fine-tune the models on your own datasets. Refer to the `train.py` script for instructions and configuration options.
50
 
51
  ```bash
52
- python train.py --config configs/config.yaml
53
- ```
54
 
55
- ### 4. Evaluate the Model
56
 
57
- Evaluate the model on your test set using the `evaluate.py` script:
58
 
59
- ```bash
60
- python evaluate.py --weights <path_to_weights> --data <path_to_test_data>
61
- ```
62
 
63
  ## Gradio Demo
64
 
65
  The Gradio demo allows users to upload remote sensing images, run cloud segmentation, and visualize the results. It can be easily modified to suit custom datasets or tasks.
66
 
67
- ### Example Screenshot:
68
- *Add a screenshot of the demo interface here if available.*
69
 
70
  ## Citation
71
 
@@ -83,8 +72,4 @@ url={https://arxiv.org/abs/2411.13127}
83
  }
84
  ```
85
 
86
- ## Acknowledgements
87
-
88
- This project builds upon vision foundation models and uses open-source libraries for training and evaluation. Special thanks to the research community for their contributions to remote sensing and computer vision.
89
-
90
 
 
29
 
30
  The pre-trained model weights are available in the repository. Download the weights and place them in the appropriate directory.
31
 
32
+
 
 
 
33
 
34
  ### 2. Run the Gradio Demo
35
 
36
  To interactively test the models using Gradio:
37
 
38
  ```bash
39
+ python app.py
40
  ```
41
 
42
+ #### Notes:
43
+ - **GPU Requirement**: If using a GPU, ensure it has at least **16GB of VRAM** to run the model efficiently.
44
+ - **CPU-Only Mode**: If you wish to run the demo on CPU, set the environment variable `CUDA_VISIBLE_DEVICES` to `-1`:
 
 
45
 
46
  ```bash
47
+ CUDA_VISIBLE_DEVICES=-1 python app.py
48
+ ```
49
 
 
50
 
51
+ This will launch a web interface where you can upload remote sensing images and view the segmentation results.
52
 
 
 
 
53
 
54
  ## Gradio Demo
55
 
56
  The Gradio demo allows users to upload remote sensing images, run cloud segmentation, and visualize the results. It can be easily modified to suit custom datasets or tasks.
57
 
 
 
58
 
59
  ## Citation
60
 
 
72
  }
73
  ```
74
 
 
 
 
 
75