# -*- coding: utf-8 -*- # @Time : 2024/7/24 上午11:36 # @Author : xiaoshun # @Email : 3038523973@qq.com # @File : cdnetv1.py # @Software: PyCharm """Cloud detection Network""" """Cloud detection Network""" """ This is the implementation of CDnetV1 without multi-scale inputs. This implementation uses ResNet by default. """ import torch import torch.nn as nn import torch.nn.functional as F affine_par = True def conv3x3(in_planes, out_planes, stride=1): "3x3 convolution with padding" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes, affine=affine_par) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes, affine=affine_par) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, bias=False) # change self.bn1 = nn.BatchNorm2d(planes, affine=affine_par) for i in self.bn1.parameters(): i.requires_grad = False padding = dilation self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, # change padding=padding, bias=False, dilation=dilation) self.bn2 = nn.BatchNorm2d(planes, affine=affine_par) for i in self.bn2.parameters(): i.requires_grad = False self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * 4, affine=affine_par) for i in self.bn3.parameters(): i.requires_grad = False self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class Classifier_Module(nn.Module): def __init__(self, dilation_series, padding_series, num_classes): super(Classifier_Module, self).__init__() self.conv2d_list = nn.ModuleList() for dilation, padding in zip(dilation_series, padding_series): self.conv2d_list.append( nn.Conv2d(2048, num_classes, kernel_size=3, stride=1, padding=padding, dilation=dilation, bias=True)) for m in self.conv2d_list: m.weight.data.normal_(0, 0.01) def forward(self, x): out = self.conv2d_list[0](x) for i in range(len(self.conv2d_list) - 1): out += self.conv2d_list[i + 1](x) return out class _ConvBNReLU(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, norm_layer=nn.BatchNorm2d): super(_ConvBNReLU, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias=False) self.bn = norm_layer(out_channels) self.relu = nn.ReLU(True) def forward(self, x): x = self.conv(x) x = self.bn(x) x = self.relu(x) return x class _ASPPConv(nn.Module): def __init__(self, in_channels, out_channels, atrous_rate, norm_layer): super(_ASPPConv, self).__init__() self.block = nn.Sequential( nn.Conv2d(in_channels, out_channels, 3, padding=atrous_rate, dilation=atrous_rate, bias=False), norm_layer(out_channels), nn.ReLU(True) ) def forward(self, x): return self.block(x) class _AsppPooling(nn.Module): def __init__(self, in_channels, out_channels, norm_layer): super(_AsppPooling, self).__init__() self.gap = nn.Sequential( nn.AdaptiveAvgPool2d(1), nn.Conv2d(in_channels, out_channels, 1, bias=False), norm_layer(out_channels), nn.ReLU(True) ) def forward(self, x): size = x.size()[2:] pool = self.gap(x) out = F.interpolate(pool, size, mode='bilinear', align_corners=True) return out class _ASPP(nn.Module): def __init__(self, in_channels, atrous_rates, norm_layer): super(_ASPP, self).__init__() out_channels = 512 # changed from 256 self.b0 = nn.Sequential( nn.Conv2d(in_channels, out_channels, 1, bias=False), norm_layer(out_channels), nn.ReLU(True) ) rate1, rate2, rate3 = tuple(atrous_rates) self.b1 = _ASPPConv(in_channels, out_channels, rate1, norm_layer) self.b2 = _ASPPConv(in_channels, out_channels, rate2, norm_layer) self.b3 = _ASPPConv(in_channels, out_channels, rate3, norm_layer) self.b4 = _AsppPooling(in_channels, out_channels, norm_layer=norm_layer) # self.project = nn.Sequential( # nn.Conv2d(5 * out_channels, out_channels, 1, bias=False), # norm_layer(out_channels), # nn.ReLU(True), # nn.Dropout(0.5)) self.dropout2d = nn.Dropout2d(0.3) def forward(self, x): feat1 = self.dropout2d(self.b0(x)) feat2 = self.dropout2d(self.b1(x)) feat3 = self.dropout2d(self.b2(x)) feat4 = self.dropout2d(self.b3(x)) feat5 = self.dropout2d(self.b4(x)) x = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1) # x = self.project(x) return x class _FPM(nn.Module): def __init__(self, in_channels, num_classes, norm_layer=nn.BatchNorm2d): super(_FPM, self).__init__() self.aspp = _ASPP(in_channels, [6, 12, 18], norm_layer=norm_layer) # self.dropout2d = nn.Dropout2d(0.5) def forward(self, x): x = torch.cat((x, self.aspp(x)), dim=1) # x = self.dropout2d(x) # added return x class BR(nn.Module): def __init__(self, num_classes, stride=1, downsample=None): super(BR, self).__init__() self.conv1 = conv3x3(num_classes, num_classes * 16, stride) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(num_classes * 16, num_classes) self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.relu(out) out = self.conv2(out) out += residual return out class CDnetV1(nn.Module): def __init__(self, in_channels=3,block=Bottleneck, layers=[3, 4, 6, 3], num_classes=21, aux=True): self.inplanes = 64 self.aux = aux super().__init__() # self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) # self.bn1 = nn.BatchNorm2d(64, affine = affine_par) self.conv1 = nn.Conv2d(in_channels, 64, kernel_size=3, stride=2, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64, affine=affine_par) self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(64, affine=affine_par) self.conv3 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn3 = nn.BatchNorm2d(64, affine=affine_par) for i in self.bn1.parameters(): i.requires_grad = False self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, ceil_mode=True) # change self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=1, dilation=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=4) # self.layer5 = self._make_pred_layer(Classifier_Module, [6,12,18,24],[6,12,18,24],num_classes) self.res5_con1x1 = nn.Sequential( nn.Conv2d(1024 + 2048, 512, kernel_size=1, stride=1, padding=0), nn.BatchNorm2d(512), nn.ReLU(True) ) self.fpm1 = _FPM(512, num_classes) self.fpm2 = _FPM(512, num_classes) self.fpm3 = _FPM(256, num_classes) self.br1 = BR(num_classes) self.br2 = BR(num_classes) self.br3 = BR(num_classes) self.br4 = BR(num_classes) self.br5 = BR(num_classes) self.br6 = BR(num_classes) self.br7 = BR(num_classes) self.predict1 = self._predict_layer(512 * 6, num_classes) self.predict2 = self._predict_layer(512 * 6, num_classes) self.predict3 = self._predict_layer(512 * 5 + 256, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, 0.01) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() # for i in m.parameters(): # i.requires_grad = False def _predict_layer(self, in_channels, num_classes): return nn.Sequential(nn.Conv2d(in_channels, 256, kernel_size=1, stride=1, padding=0), nn.BatchNorm2d(256), nn.ReLU(True), nn.Dropout2d(0.1), nn.Conv2d(256, num_classes, kernel_size=3, stride=1, padding=1, bias=True)) def _make_layer(self, block, planes, blocks, stride=1, dilation=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion or dilation == 2 or dilation == 4: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion, affine=affine_par)) for i in downsample._modules['1'].parameters(): i.requires_grad = False layers = [] layers.append(block(self.inplanes, planes, stride, dilation=dilation, downsample=downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, dilation=dilation)) return nn.Sequential(*layers) # def _make_pred_layer(self,block, dilation_series, padding_series,num_classes): # return block(dilation_series,padding_series,num_classes) def base_forward(self, x): x = self.relu(self.bn1(self.conv1(x))) size_conv1 = x.size()[2:] x = self.relu(self.bn2(self.conv2(x))) x = self.relu(self.bn3(self.conv3(x))) x = self.maxpool(x) x = self.layer1(x) res2 = x x = self.layer2(x) res3 = x x = self.layer3(x) res4 = x x = self.layer4(x) x = self.res5_con1x1(torch.cat([x, res4], dim=1)) return x, res3, res2, size_conv1 def forward(self, x): size = x.size()[2:] score1, score2, score3, size_conv1 = self.base_forward(x) # outputs = list() score1 = self.fpm1(score1) score1 = self.predict1(score1) # 1/8 predict1 = score1 score1 = self.br1(score1) score2 = self.fpm2(score2) score2 = self.predict2(score2) # 1/8 predict2 = score2 # first fusion score2 = self.br2(score2) + score1 score2 = self.br3(score2) score3 = self.fpm3(score3) score3 = self.predict3(score3) # 1/4 predict3 = score3 score3 = self.br4(score3) # second fusion size_score3 = score3.size()[2:] score3 = score3 + F.interpolate(score2, size_score3, mode='bilinear', align_corners=True) score3 = self.br5(score3) # upsampling + BR score3 = F.interpolate(score3, size_conv1, mode='bilinear', align_corners=True) score3 = self.br6(score3) score3 = F.interpolate(score3, size, mode='bilinear', align_corners=True) score3 = self.br7(score3) # if self.aux: # auxout = self.dsn(mid) # auxout = F.interpolate(auxout, size, mode='bilinear', align_corners=True) # #outputs.append(auxout) return score3 # return score3, predict1, predict2, predict3 if __name__ == '__main__': model = CDnetV1(num_classes=21) fake_image = torch.randn(2, 3, 224, 224) outputs = model(fake_image) for out in outputs: print(out.shape) # torch.Size([2, 21, 224, 224]) # torch.Size([2, 21, 29, 29]) # torch.Size([2, 21, 29, 29]) # torch.Size([2, 21, 57, 57])