# -*- coding: utf-8 -*- # @Time : 2024/7/24 下午3:41 # @Author : xiaoshun # @Email : 3038523973@qq.com # @File : cdnetv2.py # @Software: PyCharm """Cloud detection Network""" """ This is the implementation of CDnetV2 without multi-scale inputs. This implementation uses ResNet by default. """ # nn.GroupNorm import torch # import torch.nn as nn import torch.nn.functional as F from torch import nn affine_par = True def conv3x3(in_planes, out_planes, stride=1): "3x3 convolution with padding" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes, affine=affine_par) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes, affine=affine_par) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, bias=False) # change self.bn1 = nn.BatchNorm2d(planes, affine=affine_par) for i in self.bn1.parameters(): i.requires_grad = False padding = dilation self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, # change padding=padding, bias=False, dilation=dilation) self.bn2 = nn.BatchNorm2d(planes, affine=affine_par) for i in self.bn2.parameters(): i.requires_grad = False self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * 4, affine=affine_par) for i in self.bn3.parameters(): i.requires_grad = False self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out # self.layerx_1 = Bottleneck_nosample(64, 64, stride=1, dilation=1) # self.layerx_2 = Bottleneck(256, 64, stride=1, dilation=1, downsample=None) # self.layerx_3 = Bottleneck_downsample(256, 64, stride=2, dilation=1) class Res_block_1(nn.Module): expansion = 4 def __init__(self, inplanes=64, planes=64, stride=1, dilation=1): super(Res_block_1, self).__init__() self.conv1 = nn.Sequential( nn.Conv2d(inplanes, planes, kernel_size=1, stride=1, bias=False), nn.GroupNorm(8, planes), nn.ReLU(inplace=True)) self.conv2 = nn.Sequential( nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False, dilation=1), nn.GroupNorm(8, planes), nn.ReLU(inplace=True)) self.conv3 = nn.Sequential( nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False), nn.GroupNorm(8, planes * 4)) self.relu = nn.ReLU(inplace=True) self.down_sample = nn.Sequential( nn.Conv2d(inplanes, planes * 4, kernel_size=1, stride=1, bias=False), nn.GroupNorm(8, planes * 4)) def forward(self, x): # residual = x out = self.conv1(x) out = self.conv2(out) out = self.conv3(out) residual = self.down_sample(x) out += residual out = self.relu(out) return out class Res_block_2(nn.Module): expansion = 4 def __init__(self, inplanes=256, planes=64, stride=1, dilation=1): super(Res_block_2, self).__init__() self.conv1 = nn.Sequential( nn.Conv2d(inplanes, planes, kernel_size=1, stride=1, bias=False), nn.GroupNorm(8, planes), nn.ReLU(inplace=True)) self.conv2 = nn.Sequential( nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False, dilation=1), nn.GroupNorm(8, planes), nn.ReLU(inplace=True)) self.conv3 = nn.Sequential( nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False), nn.GroupNorm(8, planes * 4)) self.relu = nn.ReLU(inplace=True) def forward(self, x): residual = x out = self.conv1(x) out = self.conv2(out) out = self.conv3(out) out += residual out = self.relu(out) return out class Res_block_3(nn.Module): expansion = 4 def __init__(self, inplanes=256, planes=64, stride=1, dilation=1): super(Res_block_3, self).__init__() self.conv1 = nn.Sequential( nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, bias=False), nn.GroupNorm(8, planes), nn.ReLU(inplace=True)) self.conv2 = nn.Sequential( nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False, dilation=1), nn.GroupNorm(8, planes), nn.ReLU(inplace=True)) self.conv3 = nn.Sequential( nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False), nn.GroupNorm(8, planes * 4)) self.relu = nn.ReLU(inplace=True) self.downsample = nn.Sequential( nn.Conv2d(inplanes, planes * 4, kernel_size=1, stride=stride, bias=False), nn.GroupNorm(8, planes * 4)) def forward(self, x): # residual = x out = self.conv1(x) out = self.conv2(out) out = self.conv3(out) # residual = self.downsample(x) out += self.downsample(x) out = self.relu(out) return out class Classifier_Module(nn.Module): def __init__(self, dilation_series, padding_series, num_classes): super(Classifier_Module, self).__init__() self.conv2d_list = nn.ModuleList() for dilation, padding in zip(dilation_series, padding_series): self.conv2d_list.append( nn.Conv2d(2048, num_classes, kernel_size=3, stride=1, padding=padding, dilation=dilation, bias=True)) for m in self.conv2d_list: m.weight.data.normal_(0, 0.01) def forward(self, x): out = self.conv2d_list[0](x) for i in range(len(self.conv2d_list) - 1): out += self.conv2d_list[i + 1](x) return out class _ConvBNReLU(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, relu6=False, norm_layer=nn.BatchNorm2d): super(_ConvBNReLU, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias=False) self.bn = norm_layer(out_channels) self.relu = nn.ReLU6(True) if relu6 else nn.ReLU(True) def forward(self, x): x = self.conv(x) x = self.bn(x) x = self.relu(x) return x class _ASPPConv(nn.Module): def __init__(self, in_channels, out_channels, atrous_rate, norm_layer): super(_ASPPConv, self).__init__() self.block = nn.Sequential( nn.Conv2d(in_channels, out_channels, 3, padding=atrous_rate, dilation=atrous_rate, bias=False), norm_layer(out_channels), nn.ReLU(True) ) def forward(self, x): return self.block(x) class _AsppPooling(nn.Module): def __init__(self, in_channels, out_channels, norm_layer): super(_AsppPooling, self).__init__() self.gap = nn.Sequential( nn.AdaptiveAvgPool2d(1), nn.Conv2d(in_channels, out_channels, 1, bias=False), norm_layer(out_channels), nn.ReLU(True) ) def forward(self, x): size = x.size()[2:] pool = self.gap(x) out = F.interpolate(pool, size, mode='bilinear', align_corners=True) return out class _ASPP(nn.Module): def __init__(self, in_channels, atrous_rates, norm_layer): super(_ASPP, self).__init__() out_channels = 256 self.b0 = nn.Sequential( nn.Conv2d(in_channels, out_channels, 1, bias=False), norm_layer(out_channels), nn.ReLU(True) ) rate1, rate2, rate3 = tuple(atrous_rates) self.b1 = _ASPPConv(in_channels, out_channels, rate1, norm_layer) self.b2 = _ASPPConv(in_channels, out_channels, rate2, norm_layer) self.b3 = _ASPPConv(in_channels, out_channels, rate3, norm_layer) self.b4 = _AsppPooling(in_channels, out_channels, norm_layer=norm_layer) self.project = nn.Sequential( nn.Conv2d(5 * out_channels, out_channels, 1, bias=False), norm_layer(out_channels), nn.ReLU(True), nn.Dropout(0.5) ) def forward(self, x): feat1 = self.b0(x) feat2 = self.b1(x) feat3 = self.b2(x) feat4 = self.b3(x) feat5 = self.b4(x) x = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1) x = self.project(x) return x class _DeepLabHead(nn.Module): def __init__(self, num_classes, c1_channels=256, norm_layer=nn.BatchNorm2d): super(_DeepLabHead, self).__init__() self.aspp = _ASPP(2048, [12, 24, 36], norm_layer=norm_layer) self.c1_block = _ConvBNReLU(c1_channels, 48, 3, padding=1, norm_layer=norm_layer) self.block = nn.Sequential( _ConvBNReLU(304, 256, 3, padding=1, norm_layer=norm_layer), nn.Dropout(0.5), _ConvBNReLU(256, 256, 3, padding=1, norm_layer=norm_layer), nn.Dropout(0.1), nn.Conv2d(256, num_classes, 1)) def forward(self, x, c1): size = c1.size()[2:] c1 = self.c1_block(c1) x = self.aspp(x) x = F.interpolate(x, size, mode='bilinear', align_corners=True) return self.block(torch.cat([x, c1], dim=1)) class _CARM(nn.Module): def __init__(self, in_planes, ratio=8): super(_CARM, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.max_pool = nn.AdaptiveMaxPool2d(1) self.fc1_1 = nn.Linear(in_planes, in_planes // ratio) self.fc1_2 = nn.Linear(in_planes // ratio, in_planes) self.fc2_1 = nn.Linear(in_planes, in_planes // ratio) self.fc2_2 = nn.Linear(in_planes // ratio, in_planes) self.relu = nn.ReLU(True) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = self.avg_pool(x) avg_out = avg_out.view(avg_out.size(0), -1) avg_out = self.fc1_2(self.relu(self.fc1_1(avg_out))) max_out = self.max_pool(x) max_out = max_out.view(max_out.size(0), -1) max_out = self.fc2_2(self.relu(self.fc2_1(max_out))) max_out_size = max_out.size()[1] avg_out = torch.reshape(avg_out, (-1, max_out_size, 1, 1)) max_out = torch.reshape(max_out, (-1, max_out_size, 1, 1)) out = self.sigmoid(avg_out + max_out) x = out * x return x class FSFB_CH(nn.Module): def __init__(self, in_planes, num, ratio=8): super(FSFB_CH, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.max_pool = nn.AdaptiveMaxPool2d(1) self.fc1_1 = nn.Linear(in_planes, in_planes // ratio) self.fc1_2 = nn.Linear(in_planes // ratio, num * in_planes) self.fc2_1 = nn.Linear(in_planes, in_planes // ratio) self.fc2_2 = nn.Linear(in_planes // ratio, num * in_planes) self.relu = nn.ReLU(True) self.fc3 = nn.Linear(num * in_planes, 2 * num * in_planes) self.fc4 = nn.Linear(2 * num * in_planes, 2 * num * in_planes) self.fc5 = nn.Linear(2 * num * in_planes, num * in_planes) self.softmax = nn.Softmax(dim=3) def forward(self, x, num): avg_out = self.avg_pool(x) avg_out = avg_out.view(avg_out.size(0), -1) avg_out = self.fc1_2(self.relu(self.fc1_1(avg_out))) max_out = self.max_pool(x) max_out = max_out.view(max_out.size(0), -1) max_out = self.fc2_2(self.relu(self.fc2_1(max_out))) out = avg_out + max_out out = self.relu(self.fc3(out)) out = self.relu(self.fc4(out)) out = self.relu(self.fc5(out)) # (N, num*in_planes) out_size = out.size()[1] out = torch.reshape(out, (-1, out_size // num, 1, num)) # (N, in_planes, 1, num ) out = self.softmax(out) channel_scale = torch.chunk(out, num, dim=3) # (N, in_planes, 1, 1 ) return channel_scale class FSFB_SP(nn.Module): def __init__(self, num, norm_layer=nn.BatchNorm2d): super(FSFB_SP, self).__init__() self.conv = nn.Sequential( nn.Conv2d(2, 2 * num, kernel_size=3, padding=1, bias=False), norm_layer(2 * num), nn.ReLU(True), nn.Conv2d(2 * num, 4 * num, kernel_size=3, padding=1, bias=False), norm_layer(4 * num), nn.ReLU(True), nn.Conv2d(4 * num, 4 * num, kernel_size=3, padding=1, bias=False), norm_layer(4 * num), nn.ReLU(True), nn.Conv2d(4 * num, 2 * num, kernel_size=3, padding=1, bias=False), norm_layer(2 * num), nn.ReLU(True), nn.Conv2d(2 * num, num, kernel_size=3, padding=1, bias=False) ) self.softmax = nn.Softmax(dim=1) def forward(self, x, num): avg_out = torch.mean(x, dim=1, keepdim=True) max_out, _ = torch.max(x, dim=1, keepdim=True) x = torch.cat([avg_out, max_out], dim=1) x = self.conv(x) x = self.softmax(x) spatial_scale = torch.chunk(x, num, dim=1) return spatial_scale ################################################################################################################## class _HFFM(nn.Module): def __init__(self, in_channels, atrous_rates, norm_layer=nn.BatchNorm2d): super(_HFFM, self).__init__() out_channels = 256 self.b0 = nn.Sequential( nn.Conv2d(in_channels, out_channels, 1, bias=False), norm_layer(out_channels), nn.ReLU(True) ) rate1, rate2, rate3 = tuple(atrous_rates) self.b1 = _ASPPConv(in_channels, out_channels, rate1, norm_layer) self.b2 = _ASPPConv(in_channels, out_channels, rate2, norm_layer) self.b3 = _ASPPConv(in_channels, out_channels, rate3, norm_layer) self.b4 = _AsppPooling(in_channels, out_channels, norm_layer=norm_layer) self.carm = _CARM(in_channels) self.sa = FSFB_SP(4, norm_layer) self.ca = FSFB_CH(out_channels, 4, 8) def forward(self, x, num): x = self.carm(x) # feat1 = self.b0(x) feat1 = self.b1(x) feat2 = self.b2(x) feat3 = self.b3(x) feat4 = self.b4(x) feat = feat1 + feat2 + feat3 + feat4 spatial_atten = self.sa(feat, num) channel_atten = self.ca(feat, num) feat_ca = channel_atten[0] * feat1 + channel_atten[1] * feat2 + channel_atten[2] * feat3 + channel_atten[ 3] * feat4 feat_sa = spatial_atten[0] * feat1 + spatial_atten[1] * feat2 + spatial_atten[2] * feat3 + spatial_atten[ 3] * feat4 feat_sa = feat_sa + feat_ca return feat_sa class _AFFM(nn.Module): def __init__(self, in_channels=256, norm_layer=nn.BatchNorm2d): super(_AFFM, self).__init__() self.sa = FSFB_SP(2, norm_layer) self.ca = FSFB_CH(in_channels, 2, 8) self.carm = _CARM(in_channels) def forward(self, feat1, feat2, hffm, num): feat = feat1 + feat2 spatial_atten = self.sa(feat, num) channel_atten = self.ca(feat, num) feat_ca = channel_atten[0] * feat1 + channel_atten[1] * feat2 feat_sa = spatial_atten[0] * feat1 + spatial_atten[1] * feat2 output = self.carm(feat_sa + feat_ca + hffm) # output = self.carm (feat_sa + hffm) return output, channel_atten, spatial_atten class block_Conv3x3(nn.Module): def __init__(self, in_channels): super(block_Conv3x3, self).__init__() self.block = nn.Sequential( nn.Conv2d(in_channels, 256, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(256), nn.ReLU(True) ) def forward(self, x): return self.block(x) class CDnetV2(nn.Module): def __init__(self, in_channels=3,block=Bottleneck, layers=[3, 4, 6, 3], num_classes=21, aux=True): self.inplanes = 256 # change self.aux = aux super().__init__() # self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) # self.bn1 = nn.BatchNorm2d(64, affine = affine_par) self.conv1 = nn.Conv2d(in_channels, 64, kernel_size=3, stride=2, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64, affine=affine_par) self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(64, affine=affine_par) self.conv3 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn3 = nn.BatchNorm2d(64, affine=affine_par) self.relu = nn.ReLU(inplace=True) self.dropout = nn.Dropout(0.3) for i in self.bn1.parameters(): i.requires_grad = False self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, ceil_mode=True) # change # self.layer1 = self._make_layer(block, 64, layers[0]) self.layerx_1 = Res_block_1(64, 64, stride=1, dilation=1) self.layerx_2 = Res_block_2(256, 64, stride=1, dilation=1) self.layerx_3 = Res_block_3(256, 64, stride=2, dilation=1) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=1, dilation=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=4) # self.layer5 = self._make_pred_layer(Classifier_Module, [6,12,18,24],[6,12,18,24],num_classes) self.hffm = _HFFM(2048, [6, 12, 18]) self.affm_1 = _AFFM() self.affm_2 = _AFFM() self.affm_3 = _AFFM() self.affm_4 = _AFFM() self.carm = _CARM(256) self.con_layer1_1 = block_Conv3x3(256) self.con_res2 = block_Conv3x3(256) self.con_res3 = block_Conv3x3(512) self.con_res4 = block_Conv3x3(1024) self.con_res5 = block_Conv3x3(2048) self.dsn1 = nn.Sequential( nn.Conv2d(256, num_classes, kernel_size=1, stride=1, padding=0) ) self.dsn2 = nn.Sequential( nn.Conv2d(256, num_classes, kernel_size=1, stride=1, padding=0) ) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, 0.01) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() # for i in m.parameters(): # i.requires_grad = False # self.inplanes = 256 # change def _make_layer(self, block, planes, blocks, stride=1, dilation=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion or dilation == 2 or dilation == 4: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion, affine=affine_par)) for i in downsample._modules['1'].parameters(): i.requires_grad = False layers = [] layers.append(block(self.inplanes, planes, stride, dilation=dilation, downsample=downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, dilation=dilation)) return nn.Sequential(*layers) # def _make_pred_layer(self,block, dilation_series, padding_series,num_classes): # return block(dilation_series,padding_series,num_classes) def base_forward(self, x): x = self.relu(self.bn1(self.conv1(x))) # 1/2 x = self.relu(self.bn2(self.conv2(x))) x = self.relu(self.bn3(self.conv3(x))) x = self.maxpool(x) # 1/4 # x = self.layer1(x) # 1/8 # layer1 x = self.layerx_1(x) # 1/4 layer1_0 = x x = self.layerx_2(x) # 1/4 layer1_0 = self.con_layer1_1(x + layer1_0) # 256 size_layer1_0 = layer1_0.size()[2:] x = self.layerx_3(x) # 1/8 res2 = self.con_res2(x) # 256 size_res2 = res2.size()[2:] # layer2-4 x = self.layer2(x) # 1/16 res3 = self.con_res3(x) # 256 x = self.layer3(x) # 1/16 res4 = self.con_res4(x) # 256 x = self.layer4(x) # 1/16 res5 = self.con_res5(x) # 256 # x = self.res5_con1x1(torch.cat([x, res4], dim=1)) return layer1_0, res2, res3, res4, res5, x, size_layer1_0, size_res2 # return res2, res3, res4, res5, x, layer_1024, size_res2 def forward(self, x): # size = x.size()[2:] layer1_0, res2, res3, res4, res5, layer4, size_layer1_0, size_res2 = self.base_forward(x) hffm = self.hffm(layer4, 4) # 256 HFFM res5 = res5 + hffm aux_feature = res5 # loss_aux # res5 = self.carm(res5) res5, _, _ = self.affm_1(res4, res5, hffm, 2) # 1/16 # aux_feature = res5 res5, _, _ = self.affm_2(res3, res5, hffm, 2) # 1/16 res5 = F.interpolate(res5, size_res2, mode='bilinear', align_corners=True) res5, _, _ = self.affm_3(res2, res5, F.interpolate(hffm, size_res2, mode='bilinear', align_corners=True), 2) res5 = F.interpolate(res5, size_layer1_0, mode='bilinear', align_corners=True) res5, _, _ = self.affm_4(layer1_0, res5, F.interpolate(hffm, size_layer1_0, mode='bilinear', align_corners=True), 2) output = self.dsn1(res5) if self.aux: auxout = self.dsn2(aux_feature) # auxout = F.interpolate(auxout, size, mode='bilinear', align_corners=True) # outputs.append(auxout) size = x.size()[2:] pred, pred_aux = output, auxout pred = F.interpolate(pred, size, mode='bilinear', align_corners=True) pred_aux = F.interpolate(pred_aux, size, mode='bilinear', align_corners=True) return pred return pred, pred_aux if __name__ == '__main__': model = CDnetV2(num_classes=3) fake_image = torch.rand(2, 3, 256, 256) output = model(fake_image) for out in output: print(out.shape) # torch.Size([2, 3, 256, 256]) # torch.Size([2, 3, 256, 256])