File size: 7,286 Bytes
3c8ff2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
"""
Modified from https://github.com/TUM-LMF/MTLCC-pytorch/blob/master/src/models/convlstm/convlstm.py
authors: TUM-LMF
"""
import torch.nn as nn
from torch.autograd import Variable
import torch


class ConvGRUCell(nn.Module):
    def __init__(self, input_size, input_dim, hidden_dim, kernel_size, bias):
        """
        Initialize ConvLSTM cell.

        Parameters
        ----------
        input_size: (int, int)
            Height and width of input tensor as (height, width).
        input_dim: int
            Number of channels of input tensor.
        hidden_dim: int
            Number of channels of hidden state.
        kernel_size: (int, int)
            Size of the convolutional kernel.
        bias: bool
            Whether or not to add the bias.
        """

        super(ConvGRUCell, self).__init__()

        self.height, self.width = input_size
        self.input_dim = input_dim
        self.hidden_dim = hidden_dim

        self.kernel_size = kernel_size
        self.padding = kernel_size[0] // 2, kernel_size[1] // 2
        self.bias = bias

        self.in_conv = nn.Conv2d(
            in_channels=self.input_dim + self.hidden_dim,
            out_channels=2 * self.hidden_dim,
            kernel_size=self.kernel_size,
            padding=self.padding,
            bias=self.bias,
        )
        self.out_conv = nn.Conv2d(
            in_channels=self.input_dim + self.hidden_dim,
            out_channels=self.hidden_dim,
            kernel_size=self.kernel_size,
            padding=self.padding,
            bias=self.bias,
        )

    def forward(self, input_tensor, cur_state):
        combined = torch.cat([input_tensor, cur_state], dim=1)
        z, r = torch.sigmoid(self.in_conv(combined)).chunk(2, dim=1)
        h = torch.tanh(self.out_conv(torch.cat([input_tensor, r * cur_state], dim=1)))
        new_state = (1 - z) * cur_state + z * h
        return new_state

    def init_hidden(self, batch_size, device):
        return Variable(
            torch.zeros(batch_size, self.hidden_dim, self.height, self.width)
        ).to(device)


class ConvGRU(nn.Module):
    def __init__(
        self,
        input_size,
        input_dim,
        hidden_dim,
        kernel_size,
        num_layers=1,
        batch_first=True,
        bias=True,
        return_all_layers=False,
    ):
        super(ConvGRU, self).__init__()

        self._check_kernel_size_consistency(kernel_size)

        # Make sure that both `kernel_size` and `hidden_dim` are lists having len == num_layers
        kernel_size = self._extend_for_multilayer(kernel_size, num_layers)
        hidden_dim = self._extend_for_multilayer(hidden_dim, num_layers)
        if not len(kernel_size) == len(hidden_dim) == num_layers:
            raise ValueError("Inconsistent list length.")

        self.height, self.width = input_size

        self.input_dim = input_dim
        self.hidden_dim = hidden_dim
        self.kernel_size = kernel_size
        self.num_layers = num_layers
        self.batch_first = batch_first
        self.bias = bias
        self.return_all_layers = return_all_layers

        cell_list = []
        for i in range(0, self.num_layers):
            cur_input_dim = self.input_dim if i == 0 else self.hidden_dim[i - 1]

            cell_list.append(
                ConvGRUCell(
                    input_size=(self.height, self.width),
                    input_dim=cur_input_dim,
                    hidden_dim=self.hidden_dim[i],
                    kernel_size=self.kernel_size[i],
                    bias=self.bias,
                )
            )

        self.cell_list = nn.ModuleList(cell_list)

    def forward(
        self, input_tensor, hidden_state=None, pad_mask=None, batch_positions=None
    ):
        """

        Parameters
        ----------
        input_tensor: todo
            5-D Tensor either of shape (t, b, c, h, w) or (b, t, c, h, w)
        hidden_state: todo
            None. todo implement stateful
        pad_maks (b , t)
        Returns
        -------
        last_state_list, layer_output
        """
        if not self.batch_first:
            # (t, b, c, h, w) -> (b, t, c, h, w)
            input_tensor.permute(1, 0, 2, 3, 4)

        # Implement stateful ConvLSTM
        if hidden_state is not None:
            raise NotImplementedError()
        else:
            hidden_state = self._init_hidden(
                batch_size=input_tensor.size(0), device=input_tensor.device
            )

        layer_output_list = []
        last_state_list = []

        seq_len = input_tensor.size(1)
        cur_layer_input = input_tensor

        for layer_idx in range(self.num_layers):

            h = hidden_state[layer_idx]
            output_inner = []
            for t in range(seq_len):
                h = self.cell_list[layer_idx](
                    input_tensor=cur_layer_input[:, t, :, :, :], cur_state=h
                )
                output_inner.append(h)

            layer_output = torch.stack(output_inner, dim=1)
            if pad_mask is not None:
                last_positions = (~pad_mask).sum(dim=1) - 1
                layer_output = layer_output[:, last_positions, :, :, :]

            cur_layer_input = layer_output

            layer_output_list.append(layer_output)
            last_state_list.append(h)

        if not self.return_all_layers:
            layer_output_list = layer_output_list[-1]
            last_state_list = last_state_list[-1]

        return layer_output_list, last_state_list

    def _init_hidden(self, batch_size, device):
        init_states = []
        for i in range(self.num_layers):
            init_states.append(self.cell_list[i].init_hidden(batch_size, device))
        return init_states

    @staticmethod
    def _check_kernel_size_consistency(kernel_size):
        if not (
            isinstance(kernel_size, tuple)
            or (
                isinstance(kernel_size, list)
                and all([isinstance(elem, tuple) for elem in kernel_size])
            )
        ):
            raise ValueError("`kernel_size` must be tuple or list of tuples")

    @staticmethod
    def _extend_for_multilayer(param, num_layers):
        if not isinstance(param, list):
            param = [param] * num_layers
        return param


class ConvGRU_Seg(nn.Module):
    def __init__(
        self, num_classes, input_size, input_dim, hidden_dim, kernel_size, pad_value=0
    ):
        super(ConvGRU_Seg, self).__init__()
        self.convgru_encoder = ConvGRU(
            input_dim=input_dim,
            input_size=input_size,
            hidden_dim=hidden_dim,
            kernel_size=kernel_size,
            return_all_layers=False,
        )
        self.classification_layer = nn.Conv2d(
            in_channels=hidden_dim,
            out_channels=num_classes,
            kernel_size=kernel_size,
            padding=1,
        )
        self.pad_value = pad_value

    def forward(self, input, batch_positions=None):
        pad_mask = (
            (input == self.pad_value).all(dim=-1).all(dim=-1).all(dim=-1)
        )  # BxT pad mask
        pad_mask = pad_mask if pad_mask.any() else None
        _, out = self.convgru_encoder(input, pad_mask=pad_mask)
        out = self.classification_layer(out)
        return out