File size: 10,503 Bytes
3c8ff2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
"""
Taken from https://github.com/TUM-LMF/MTLCC-pytorch/blob/master/src/models/convlstm/convlstm.py
authors: TUM-LMF
"""
import torch.nn as nn
from torch.autograd import Variable
import torch


class ConvLSTMCell(nn.Module):
    def __init__(self, input_size, input_dim, hidden_dim, kernel_size, bias):
        """
        Initialize ConvLSTM cell.

        Parameters
        ----------
        input_size: (int, int)
            Height and width of input tensor as (height, width).
        input_dim: int
            Number of channels of input tensor.
        hidden_dim: int
            Number of channels of hidden state.
        kernel_size: (int, int)
            Size of the convolutional kernel.
        bias: bool
            Whether or not to add the bias.
        """

        super(ConvLSTMCell, self).__init__()

        self.height, self.width = input_size
        self.input_dim = input_dim
        self.hidden_dim = hidden_dim

        self.kernel_size = kernel_size
        self.padding = kernel_size[0] // 2, kernel_size[1] // 2
        self.bias = bias

        self.conv = nn.Conv2d(
            in_channels=self.input_dim + self.hidden_dim,
            out_channels=4 * self.hidden_dim,
            kernel_size=self.kernel_size,
            padding=self.padding,
            bias=self.bias,
        )

    def forward(self, input_tensor, cur_state):
        h_cur, c_cur = cur_state

        combined = torch.cat(
            [input_tensor, h_cur], dim=1
        )  # concatenate along channel axis

        combined_conv = self.conv(combined)
        cc_i, cc_f, cc_o, cc_g = torch.split(combined_conv, self.hidden_dim, dim=1)
        i = torch.sigmoid(cc_i)
        f = torch.sigmoid(cc_f)
        o = torch.sigmoid(cc_o)
        g = torch.tanh(cc_g)

        c_next = f * c_cur + i * g
        h_next = o * torch.tanh(c_next)

        return h_next, c_next

    def init_hidden(self, batch_size, device):
        return (
            Variable(
                torch.zeros(batch_size, self.hidden_dim, self.height, self.width)
            ).to(device),
            Variable(
                torch.zeros(batch_size, self.hidden_dim, self.height, self.width)
            ).to(device),
        )


class ConvLSTM(nn.Module):
    def __init__(
        self,
        input_size,
        input_dim,
        hidden_dim,
        kernel_size,
        num_layers=1,
        batch_first=True,
        bias=True,
        return_all_layers=False,
    ):
        super(ConvLSTM, self).__init__()

        self._check_kernel_size_consistency(kernel_size)

        # Make sure that both `kernel_size` and `hidden_dim` are lists having len == num_layers
        kernel_size = self._extend_for_multilayer(kernel_size, num_layers)
        hidden_dim = self._extend_for_multilayer(hidden_dim, num_layers)
        if not len(kernel_size) == len(hidden_dim) == num_layers:
            raise ValueError("Inconsistent list length.")

        self.height, self.width = input_size

        self.input_dim = input_dim
        self.hidden_dim = hidden_dim
        self.kernel_size = kernel_size
        self.num_layers = num_layers
        self.batch_first = batch_first
        self.bias = bias
        self.return_all_layers = return_all_layers

        cell_list = []
        for i in range(0, self.num_layers):
            cur_input_dim = self.input_dim if i == 0 else self.hidden_dim[i - 1]

            cell_list.append(
                ConvLSTMCell(
                    input_size=(self.height, self.width),
                    input_dim=cur_input_dim,
                    hidden_dim=self.hidden_dim[i],
                    kernel_size=self.kernel_size[i],
                    bias=self.bias,
                )
            )

        self.cell_list = nn.ModuleList(cell_list)

    def forward(self, input_tensor, hidden_state=None, pad_mask=None):
        """

        Parameters
        ----------
        input_tensor: todo
            5-D Tensor either of shape (t, b, c, h, w) or (b, t, c, h, w)
        hidden_state: todo
            None. todo implement stateful
        pad_maks (b , t)
        Returns
        -------
        last_state_list, layer_output
        """
        if not self.batch_first:
            # (t, b, c, h, w) -> (b, t, c, h, w)
            input_tensor.permute(1, 0, 2, 3, 4)

        # Implement stateful ConvLSTM
        if hidden_state is not None:
            raise NotImplementedError()
        else:
            hidden_state = self._init_hidden(
                batch_size=input_tensor.size(0), device=input_tensor.device
            )

        layer_output_list = []
        last_state_list = []

        seq_len = input_tensor.size(1)
        cur_layer_input = input_tensor

        for layer_idx in range(self.num_layers):

            h, c = hidden_state[layer_idx]
            output_inner = []
            for t in range(seq_len):
                h, c = self.cell_list[layer_idx](
                    input_tensor=cur_layer_input[:, t, :, :, :], cur_state=[h, c]
                )
                output_inner.append(h)

            layer_output = torch.stack(output_inner, dim=1)
            if pad_mask is not None:
                last_positions = (~pad_mask).sum(dim=1) - 1
                layer_output = layer_output[:, last_positions, :, :, :]

            cur_layer_input = layer_output

            layer_output_list.append(layer_output)
            last_state_list.append([h, c])

        if not self.return_all_layers:
            layer_output_list = layer_output_list[-1:]
            last_state_list = last_state_list[-1:]

        return layer_output_list, last_state_list

    def _init_hidden(self, batch_size, device):
        init_states = []
        for i in range(self.num_layers):
            init_states.append(self.cell_list[i].init_hidden(batch_size, device))
        return init_states

    @staticmethod
    def _check_kernel_size_consistency(kernel_size):
        if not (
            isinstance(kernel_size, tuple)
            or (
                isinstance(kernel_size, list)
                and all([isinstance(elem, tuple) for elem in kernel_size])
            )
        ):
            raise ValueError("`kernel_size` must be tuple or list of tuples")

    @staticmethod
    def _extend_for_multilayer(param, num_layers):
        if not isinstance(param, list):
            param = [param] * num_layers
        return param


class ConvLSTM_Seg(nn.Module):
    def __init__(
        self, num_classes, input_size, input_dim, hidden_dim, kernel_size, pad_value=0
    ):
        super(ConvLSTM_Seg, self).__init__()
        self.convlstm_encoder = ConvLSTM(
            input_dim=input_dim,
            input_size=input_size,
            hidden_dim=hidden_dim,
            kernel_size=kernel_size,
            return_all_layers=False,
        )
        self.classification_layer = nn.Conv2d(
            in_channels=hidden_dim,
            out_channels=num_classes,
            kernel_size=kernel_size,
            padding=1,
        )
        self.pad_value = pad_value

    def forward(self, input, batch_positions=None):
        pad_mask = (
            (input == self.pad_value).all(dim=-1).all(dim=-1).all(dim=-1)
        )  # BxT pad mask
        pad_mask = pad_mask if pad_mask.any() else None
        _, states = self.convlstm_encoder(input, pad_mask=pad_mask)
        out = states[0][1]  # take last cell state as embedding
        out = self.classification_layer(out)

        return out


class BConvLSTM_Seg(nn.Module):
    def __init__(
        self, num_classes, input_size, input_dim, hidden_dim, kernel_size, pad_value=0
    ):
        super(BConvLSTM_Seg, self).__init__()
        self.convlstm_forward = ConvLSTM(
            input_dim=input_dim,
            input_size=input_size,
            hidden_dim=hidden_dim,
            kernel_size=kernel_size,
            return_all_layers=False,
        )
        self.convlstm_backward = ConvLSTM(
            input_dim=input_dim,
            input_size=input_size,
            hidden_dim=hidden_dim,
            kernel_size=kernel_size,
            return_all_layers=False,
        )
        self.classification_layer = nn.Conv2d(
            in_channels=2 * hidden_dim,
            out_channels=num_classes,
            kernel_size=kernel_size,
            padding=1,
        )
        self.pad_value = pad_value

    def forward(self, input, batch_posistions=None):
        pad_mask = (
            (input == self.pad_value).all(dim=-1).all(dim=-1).all(dim=-1)
        )  # BxT pad mask
        pad_mask = pad_mask if pad_mask.any() else None

        # FORWARD
        _, forward_states = self.convlstm_forward(input, pad_mask=pad_mask)
        out = forward_states[0][1]  # take last cell state as embedding

        # BACKWARD
        x_reverse = torch.flip(input, dims=[1])
        if pad_mask is not None:
            pmr = torch.flip(pad_mask.float(), dims=[1]).bool()
            x_reverse = torch.masked_fill(x_reverse, pmr[:, :, None, None, None], 0)
            # Fill leading padded positions with 0s
        _, backward_states = self.convlstm_backward(x_reverse)

        out = torch.cat([out, backward_states[0][1]], dim=1)
        out = self.classification_layer(out)
        return out


class BConvLSTM(nn.Module):
    def __init__(self, input_size, input_dim, hidden_dim, kernel_size):
        super(BConvLSTM, self).__init__()
        self.convlstm_forward = ConvLSTM(
            input_dim=input_dim,
            input_size=input_size,
            hidden_dim=hidden_dim,
            kernel_size=kernel_size,
            return_all_layers=False,
        )
        self.convlstm_backward = ConvLSTM(
            input_dim=input_dim,
            input_size=input_size,
            hidden_dim=hidden_dim,
            kernel_size=kernel_size,
            return_all_layers=False,
        )

    def forward(self, input, pad_mask=None):
        # FORWARD
        _, forward_states = self.convlstm_forward(input, pad_mask=pad_mask)
        out = forward_states[0][1]  # take last cell state as embedding

        # BACKWARD
        x_reverse = torch.flip(input, dims=[1])
        if pad_mask is not None:
            pmr = torch.flip(pad_mask.float(), dims=[1]).bool()
            x_reverse = torch.masked_fill(x_reverse, pmr[:, :, None, None, None], 0)
            # Fill leading padded positions with 0s
        _, backward_states = self.convlstm_backward(x_reverse)

        out = torch.cat([out, backward_states[0][1]], dim=1)
        return out