File size: 10,503 Bytes
3c8ff2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
"""
Taken from https://github.com/TUM-LMF/MTLCC-pytorch/blob/master/src/models/convlstm/convlstm.py
authors: TUM-LMF
"""
import torch.nn as nn
from torch.autograd import Variable
import torch
class ConvLSTMCell(nn.Module):
def __init__(self, input_size, input_dim, hidden_dim, kernel_size, bias):
"""
Initialize ConvLSTM cell.
Parameters
----------
input_size: (int, int)
Height and width of input tensor as (height, width).
input_dim: int
Number of channels of input tensor.
hidden_dim: int
Number of channels of hidden state.
kernel_size: (int, int)
Size of the convolutional kernel.
bias: bool
Whether or not to add the bias.
"""
super(ConvLSTMCell, self).__init__()
self.height, self.width = input_size
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.kernel_size = kernel_size
self.padding = kernel_size[0] // 2, kernel_size[1] // 2
self.bias = bias
self.conv = nn.Conv2d(
in_channels=self.input_dim + self.hidden_dim,
out_channels=4 * self.hidden_dim,
kernel_size=self.kernel_size,
padding=self.padding,
bias=self.bias,
)
def forward(self, input_tensor, cur_state):
h_cur, c_cur = cur_state
combined = torch.cat(
[input_tensor, h_cur], dim=1
) # concatenate along channel axis
combined_conv = self.conv(combined)
cc_i, cc_f, cc_o, cc_g = torch.split(combined_conv, self.hidden_dim, dim=1)
i = torch.sigmoid(cc_i)
f = torch.sigmoid(cc_f)
o = torch.sigmoid(cc_o)
g = torch.tanh(cc_g)
c_next = f * c_cur + i * g
h_next = o * torch.tanh(c_next)
return h_next, c_next
def init_hidden(self, batch_size, device):
return (
Variable(
torch.zeros(batch_size, self.hidden_dim, self.height, self.width)
).to(device),
Variable(
torch.zeros(batch_size, self.hidden_dim, self.height, self.width)
).to(device),
)
class ConvLSTM(nn.Module):
def __init__(
self,
input_size,
input_dim,
hidden_dim,
kernel_size,
num_layers=1,
batch_first=True,
bias=True,
return_all_layers=False,
):
super(ConvLSTM, self).__init__()
self._check_kernel_size_consistency(kernel_size)
# Make sure that both `kernel_size` and `hidden_dim` are lists having len == num_layers
kernel_size = self._extend_for_multilayer(kernel_size, num_layers)
hidden_dim = self._extend_for_multilayer(hidden_dim, num_layers)
if not len(kernel_size) == len(hidden_dim) == num_layers:
raise ValueError("Inconsistent list length.")
self.height, self.width = input_size
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.kernel_size = kernel_size
self.num_layers = num_layers
self.batch_first = batch_first
self.bias = bias
self.return_all_layers = return_all_layers
cell_list = []
for i in range(0, self.num_layers):
cur_input_dim = self.input_dim if i == 0 else self.hidden_dim[i - 1]
cell_list.append(
ConvLSTMCell(
input_size=(self.height, self.width),
input_dim=cur_input_dim,
hidden_dim=self.hidden_dim[i],
kernel_size=self.kernel_size[i],
bias=self.bias,
)
)
self.cell_list = nn.ModuleList(cell_list)
def forward(self, input_tensor, hidden_state=None, pad_mask=None):
"""
Parameters
----------
input_tensor: todo
5-D Tensor either of shape (t, b, c, h, w) or (b, t, c, h, w)
hidden_state: todo
None. todo implement stateful
pad_maks (b , t)
Returns
-------
last_state_list, layer_output
"""
if not self.batch_first:
# (t, b, c, h, w) -> (b, t, c, h, w)
input_tensor.permute(1, 0, 2, 3, 4)
# Implement stateful ConvLSTM
if hidden_state is not None:
raise NotImplementedError()
else:
hidden_state = self._init_hidden(
batch_size=input_tensor.size(0), device=input_tensor.device
)
layer_output_list = []
last_state_list = []
seq_len = input_tensor.size(1)
cur_layer_input = input_tensor
for layer_idx in range(self.num_layers):
h, c = hidden_state[layer_idx]
output_inner = []
for t in range(seq_len):
h, c = self.cell_list[layer_idx](
input_tensor=cur_layer_input[:, t, :, :, :], cur_state=[h, c]
)
output_inner.append(h)
layer_output = torch.stack(output_inner, dim=1)
if pad_mask is not None:
last_positions = (~pad_mask).sum(dim=1) - 1
layer_output = layer_output[:, last_positions, :, :, :]
cur_layer_input = layer_output
layer_output_list.append(layer_output)
last_state_list.append([h, c])
if not self.return_all_layers:
layer_output_list = layer_output_list[-1:]
last_state_list = last_state_list[-1:]
return layer_output_list, last_state_list
def _init_hidden(self, batch_size, device):
init_states = []
for i in range(self.num_layers):
init_states.append(self.cell_list[i].init_hidden(batch_size, device))
return init_states
@staticmethod
def _check_kernel_size_consistency(kernel_size):
if not (
isinstance(kernel_size, tuple)
or (
isinstance(kernel_size, list)
and all([isinstance(elem, tuple) for elem in kernel_size])
)
):
raise ValueError("`kernel_size` must be tuple or list of tuples")
@staticmethod
def _extend_for_multilayer(param, num_layers):
if not isinstance(param, list):
param = [param] * num_layers
return param
class ConvLSTM_Seg(nn.Module):
def __init__(
self, num_classes, input_size, input_dim, hidden_dim, kernel_size, pad_value=0
):
super(ConvLSTM_Seg, self).__init__()
self.convlstm_encoder = ConvLSTM(
input_dim=input_dim,
input_size=input_size,
hidden_dim=hidden_dim,
kernel_size=kernel_size,
return_all_layers=False,
)
self.classification_layer = nn.Conv2d(
in_channels=hidden_dim,
out_channels=num_classes,
kernel_size=kernel_size,
padding=1,
)
self.pad_value = pad_value
def forward(self, input, batch_positions=None):
pad_mask = (
(input == self.pad_value).all(dim=-1).all(dim=-1).all(dim=-1)
) # BxT pad mask
pad_mask = pad_mask if pad_mask.any() else None
_, states = self.convlstm_encoder(input, pad_mask=pad_mask)
out = states[0][1] # take last cell state as embedding
out = self.classification_layer(out)
return out
class BConvLSTM_Seg(nn.Module):
def __init__(
self, num_classes, input_size, input_dim, hidden_dim, kernel_size, pad_value=0
):
super(BConvLSTM_Seg, self).__init__()
self.convlstm_forward = ConvLSTM(
input_dim=input_dim,
input_size=input_size,
hidden_dim=hidden_dim,
kernel_size=kernel_size,
return_all_layers=False,
)
self.convlstm_backward = ConvLSTM(
input_dim=input_dim,
input_size=input_size,
hidden_dim=hidden_dim,
kernel_size=kernel_size,
return_all_layers=False,
)
self.classification_layer = nn.Conv2d(
in_channels=2 * hidden_dim,
out_channels=num_classes,
kernel_size=kernel_size,
padding=1,
)
self.pad_value = pad_value
def forward(self, input, batch_posistions=None):
pad_mask = (
(input == self.pad_value).all(dim=-1).all(dim=-1).all(dim=-1)
) # BxT pad mask
pad_mask = pad_mask if pad_mask.any() else None
# FORWARD
_, forward_states = self.convlstm_forward(input, pad_mask=pad_mask)
out = forward_states[0][1] # take last cell state as embedding
# BACKWARD
x_reverse = torch.flip(input, dims=[1])
if pad_mask is not None:
pmr = torch.flip(pad_mask.float(), dims=[1]).bool()
x_reverse = torch.masked_fill(x_reverse, pmr[:, :, None, None, None], 0)
# Fill leading padded positions with 0s
_, backward_states = self.convlstm_backward(x_reverse)
out = torch.cat([out, backward_states[0][1]], dim=1)
out = self.classification_layer(out)
return out
class BConvLSTM(nn.Module):
def __init__(self, input_size, input_dim, hidden_dim, kernel_size):
super(BConvLSTM, self).__init__()
self.convlstm_forward = ConvLSTM(
input_dim=input_dim,
input_size=input_size,
hidden_dim=hidden_dim,
kernel_size=kernel_size,
return_all_layers=False,
)
self.convlstm_backward = ConvLSTM(
input_dim=input_dim,
input_size=input_size,
hidden_dim=hidden_dim,
kernel_size=kernel_size,
return_all_layers=False,
)
def forward(self, input, pad_mask=None):
# FORWARD
_, forward_states = self.convlstm_forward(input, pad_mask=pad_mask)
out = forward_states[0][1] # take last cell state as embedding
# BACKWARD
x_reverse = torch.flip(input, dims=[1])
if pad_mask is not None:
pmr = torch.flip(pad_mask.float(), dims=[1]).bool()
x_reverse = torch.masked_fill(x_reverse, pmr[:, :, None, None, None], 0)
# Fill leading padded positions with 0s
_, backward_states = self.convlstm_backward(x_reverse)
out = torch.cat([out, backward_states[0][1]], dim=1)
return out
|