File size: 14,088 Bytes
3c8ff2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial
import math
from abc import abstractmethod


class EmbedBlock(nn.Module):
    """
    Any module where forward() takes embeddings as a second argument.
    """

    @abstractmethod
    def forward(self, x, emb):
        """
        Apply the module to `x` given `emb` embeddings.
        """


class EmbedSequential(nn.Sequential, EmbedBlock):
    """
    A sequential module that passes embeddings to the children that
    support it as an extra input.
    """

    def forward(self, x, emb):
        for layer in self:
            if isinstance(layer, EmbedBlock):
                x = layer(x, emb)
            else:
                x = layer(x)
        return x


def gamma_embedding(gammas, dim, max_period=10000):
    """
    Create sinusoidal timestep embeddings.
    :param gammas: a 1-D Tensor of N indices, one per batch element.
                      These may be fractional.
    :param dim: the dimension of the output.
    :param max_period: controls the minimum frequency of the embeddings.
    :return: an [N x dim] Tensor of positional embeddings.
    """
    half = dim // 2
    freqs = torch.exp(
        -math.log(max_period) * torch.arange(start=0,
                                             end=half, dtype=torch.float32) / half
    ).to(device=gammas.device)
    args = gammas[:, None].float() * freqs[None]
    embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
    if dim % 2:
        embedding = torch.cat(
            [embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
    return embedding


class LayerNormFunction(torch.autograd.Function):

    @staticmethod
    def forward(ctx, x, weight, bias, eps):
        ctx.eps = eps
        N, C, H, W = x.size()
        mu = x.mean(1, keepdim=True)
        var = (x - mu).pow(2).mean(1, keepdim=True)
        y = (x - mu) / (var + eps).sqrt()
        ctx.save_for_backward(y, var, weight)
        y = weight.view(1, C, 1, 1) * y + bias.view(1, C, 1, 1)
        return y

    @staticmethod
    def backward(ctx, grad_output):
        eps = ctx.eps

        N, C, H, W = grad_output.size()
        y, var, weight = ctx.saved_variables
        g = grad_output * weight.view(1, C, 1, 1)
        mean_g = g.mean(dim=1, keepdim=True)

        mean_gy = (g * y).mean(dim=1, keepdim=True)
        gx = 1. / torch.sqrt(var + eps) * (g - y * mean_gy - mean_g)
        return gx, (grad_output * y).sum(dim=3).sum(dim=2).sum(dim=0), grad_output.sum(dim=3).sum(dim=2).sum(
            dim=0), None


class LayerNorm2d(nn.Module):

    def __init__(self, channels, eps=1e-6):
        super(LayerNorm2d, self).__init__()
        self.register_parameter('weight', nn.Parameter(torch.ones(channels)))
        self.register_parameter('bias', nn.Parameter(torch.zeros(channels)))
        self.eps = eps

    def forward(self, x):
        return LayerNormFunction.apply(x, self.weight, self.bias, self.eps)


class SimpleGate(nn.Module):
    def forward(self, x):
        x1, x2 = x.chunk(2, dim=1)
        return x1 * x2


class CondNAFBlock(nn.Module):
    def __init__(self, c, DW_Expand=2, FFN_Expand=2, drop_out_rate=0.):
        super().__init__()
        dw_channel = c * DW_Expand
        self.conv1 = nn.Conv2d(in_channels=c, out_channels=dw_channel,
                               kernel_size=1, padding=0, stride=1, groups=1, bias=True)
        self.conv2 = nn.Conv2d(in_channels=dw_channel, out_channels=dw_channel, kernel_size=3, padding=1, stride=1, groups=dw_channel,
                               bias=True)
        self.conv3 = nn.Conv2d(in_channels=dw_channel // 2, out_channels=c,
                               kernel_size=1, padding=0, stride=1, groups=1, bias=True)

        # Simplified Channel Attention
        # self.sca = nn.Sequential(
        #     nn.AdaptiveAvgPool2d(1),
        #     nn.Conv2d(in_channels=dw_channel // 2, out_channels=dw_channel // 2, kernel_size=1, padding=0, stride=1,
        #               groups=1, bias=True),
        # )
        self.sca_avg = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(in_channels=dw_channel // 4, out_channels=dw_channel // 4, kernel_size=1, padding=0, stride=1,
                      groups=1, bias=True),
        )
        self.sca_max = nn.Sequential(
            nn.AdaptiveMaxPool2d(1),
            nn.Conv2d(in_channels=dw_channel // 4, out_channels=dw_channel // 4, kernel_size=1, padding=0, stride=1,
                      groups=1, bias=True),
        )

        # SimpleGate
        self.sg = SimpleGate()

        ffn_channel = FFN_Expand * c
        self.conv4 = nn.Conv2d(in_channels=c, out_channels=ffn_channel,
                               kernel_size=1, padding=0, stride=1, groups=1, bias=True)
        self.conv5 = nn.Conv2d(in_channels=ffn_channel // 2, out_channels=c,
                               kernel_size=1, padding=0, stride=1, groups=1, bias=True)

        self.norm1 = LayerNorm2d(c)
        self.norm2 = LayerNorm2d(c)

        self.dropout1 = nn.Dropout(
            drop_out_rate) if drop_out_rate > 0. else nn.Identity()
        self.dropout2 = nn.Dropout(
            drop_out_rate) if drop_out_rate > 0. else nn.Identity()

        self.beta = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True)
        self.gamma = nn.Parameter(torch.zeros(
            (1, c, 1, 1)), requires_grad=True)

    def forward(self, inp):
        x = inp

        x = self.norm1(x)

        x = self.conv1(x)
        x = self.conv2(x)
        x = self.sg(x)
        x_avg, x_max = x.chunk(2, dim=1)
        x_avg = self.sca_avg(x_avg)*x_avg
        x_max = self.sca_max(x_max)*x_max
        x = torch.cat([x_avg, x_max], dim=1)
        x = self.conv3(x)

        x = self.dropout1(x)

        y = inp + x * self.beta

        x = self.conv4(self.norm2(y))
        x = self.sg(x)
        x = self.conv5(x)

        x = self.dropout2(x)

        return y + x * self.gamma


class NAFBlock(nn.Module):
    def __init__(self, c, DW_Expand=2, FFN_Expand=2, drop_out_rate=0.):
        super().__init__()
        dw_channel = c * DW_Expand
        self.conv1 = nn.Conv2d(in_channels=c, out_channels=dw_channel,
                               kernel_size=1, padding=0, stride=1, groups=1, bias=True)
        self.conv2 = nn.Conv2d(in_channels=dw_channel, out_channels=dw_channel, kernel_size=3, padding=1, stride=1, groups=dw_channel,
                               bias=True)
        self.conv3 = nn.Conv2d(in_channels=dw_channel // 2, out_channels=c,
                               kernel_size=1, padding=0, stride=1, groups=1, bias=True)

        # Simplified Channel Attention
        # self.sca = nn.Sequential(
        #     nn.AdaptiveAvgPool2d(1),
        #     nn.Conv2d(in_channels=dw_channel // 2, out_channels=dw_channel // 2, kernel_size=1, padding=0, stride=1,
        #               groups=1, bias=True),
        # )
        self.sca_avg = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(in_channels=dw_channel // 4, out_channels=dw_channel // 4, kernel_size=1, padding=0, stride=1,
                      groups=1, bias=True),
        )
        self.sca_max = nn.Sequential(
            nn.AdaptiveMaxPool2d(1),
            nn.Conv2d(in_channels=dw_channel // 4, out_channels=dw_channel // 4, kernel_size=1, padding=0, stride=1,
                      groups=1, bias=True),
        )

        # SimpleGate
        self.sg = SimpleGate()

        ffn_channel = FFN_Expand * c
        self.conv4 = nn.Conv2d(in_channels=c, out_channels=ffn_channel,
                               kernel_size=1, padding=0, stride=1, groups=1, bias=True)
        self.conv5 = nn.Conv2d(in_channels=ffn_channel // 2, out_channels=c,
                               kernel_size=1, padding=0, stride=1, groups=1, bias=True)

        self.norm1 = LayerNorm2d(c)
        self.norm2 = LayerNorm2d(c)

        self.dropout1 = nn.Dropout(
            drop_out_rate) if drop_out_rate > 0. else nn.Identity()
        self.dropout2 = nn.Dropout(
            drop_out_rate) if drop_out_rate > 0. else nn.Identity()

        self.beta = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True)
        self.gamma = nn.Parameter(torch.zeros(
            (1, c, 1, 1)), requires_grad=True)
        # self.time_emb = nn.Sequential(
        #     nn.SiLU(),
        #     nn.Linear(256, c),
        # )

    def forward(self, inp):
        x = inp

        x = self.norm1(x)

        x = self.conv1(x)
        x = self.conv2(x)
        x = self.sg(x)
        x_avg, x_max = x.chunk(2, dim=1)
        x_avg = self.sca_avg(x_avg)*x_avg
        x_max = self.sca_max(x_max)*x_max
        x = torch.cat([x_avg, x_max], dim=1)
        x = self.conv3(x)

        x = self.dropout1(x)

        y = inp + x * self.beta

        # y = y+self.time_emb(t)[..., None, None]

        x = self.conv4(self.norm2(y))
        x = self.sg(x)
        x = self.conv5(x)

        x = self.dropout2(x)

        return y + x * self.gamma


class UNCRTAINTS(nn.Module):

    def __init__(
        self,
        input_dim=15,
        out_conv=[13],
        width=64,
        middle_blk_num=1,
        enc_blk_nums=[1, 1, 1, 1],
        dec_blk_nums=[1, 1, 1, 1],
        encoder_widths=[128],
        decoder_widths=[128,128,128,128,128],
        out_nonlin_mean=False,
        out_nonlin_var='relu',
        agg_mode="att_group",
        encoder_norm="group",
        decoder_norm="batch",
        n_head=16,
        d_model=256,
        d_k=4,
        pad_value=0,
        padding_mode="reflect",
        positional_encoding=True,
        covmode='diag',
        scale_by=1,
        separate_out=False,
        use_v=False,
        block_type='mbconv',
        is_mono=False
    ):
        super().__init__()

        self.intro = nn.Conv2d(in_channels=input_dim, out_channels=width, kernel_size=3, padding=1, stride=1, groups=1,
                               bias=True)
        # self.cond_intro = nn.Conv2d(in_channels=img_channel+2, out_channels=width, kernel_size=3, padding=1, stride=1, groups=1,
        #                             bias=True)
        self.ending = nn.Conv2d(in_channels=width, out_channels=out_conv[0], kernel_size=3, padding=1, stride=1, groups=1,
                                bias=True)
        # self.inp_ending = nn.Conv2d(in_channels=img_channel, out_channels=3, kernel_size=3, padding=1, stride=1, groups=1,
        #                             bias=True)

        self.encoders = nn.ModuleList()
        self.cond_encoders = nn.ModuleList()

        self.decoders = nn.ModuleList()

        self.middle_blks = nn.ModuleList()

        self.ups = nn.ModuleList()

        self.downs = nn.ModuleList()
        self.cond_downs = nn.ModuleList()

        chan = width
        for num in enc_blk_nums:
            self.encoders.append(
                nn.Sequential(
                    *[NAFBlock(chan) for _ in range(num)]
                )
            )
            self.cond_encoders.append(
                nn.Sequential(
                    *[CondNAFBlock(chan) for _ in range(num)]
                )
            )
            self.downs.append(
                nn.Conv2d(chan, 2*chan, 2, 2)
            )
            self.cond_downs.append(
                nn.Conv2d(chan, 2*chan, 2, 2)
            )
            chan = chan * 2

        self.middle_blks = \
            nn.Sequential(
                *[NAFBlock(chan) for _ in range(middle_blk_num)]
            )

        for num in dec_blk_nums:
            self.ups.append(
                nn.Sequential(
                    nn.Conv2d(chan, chan * 2, 1, bias=False),
                    nn.PixelShuffle(2)
                )
            )
            chan = chan // 2
            self.decoders.append(
                nn.Sequential(
                    *[NAFBlock(chan) for _ in range(num)]
                )
            )

        self.padder_size = 2 ** len(self.encoders)
        self.map = nn.Sequential(
            nn.Linear(64, 256),
            nn.SiLU(),
            nn.Linear(256, 256),
        )

    def forward(self, inp):
        inp = self.check_image_size(inp)
        x = self.intro(inp)

        encs = []

        for encoder, down in zip(self.encoders, self.downs):
            x = encoder(x)
            # b, c, h, w = cond.shape
            # tmp_cond = cond.view(b//3, 3, c, h, w).sum(dim=1)
            # tmp_cond = cond
            # x = x + tmp_cond
            encs.append(x)
            x = down(x)
            # cond = cond_down(cond)

        x = self.middle_blks(x)

        for decoder, up, enc_skip in zip(self.decoders, self.ups, encs[::-1]):
            x = up(x)
            x = x + enc_skip
            x = decoder(x)

        x = self.ending(x)
        # x = x + self.inp_ending(inp)

        return x

    def check_image_size(self, x):
        _, _, h, w = x.size()
        mod_pad_h = (self.padder_size - h %
                     self.padder_size) % self.padder_size
        mod_pad_w = (self.padder_size - w %
                     self.padder_size) % self.padder_size
        x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h))
        return x


if __name__ == '__main__':
    # unit test for ground resolution
    inp = torch.randn(1, 15, 256, 256)
    net = UNCRTAINTS(
        input_dim=15,
        out_conv=[13],
        width=64,
        middle_blk_num=1,
        enc_blk_nums=[1, 1, 1, 1],
        dec_blk_nums=[1, 1, 1, 1],
    )
    out = net(inp)
    assert out.shape == (1, 13, 256, 256)
        
    # from thop import profile
    # out_shape = (1, 12, 384, 384)
    # input_shape = (1, 13, 384, 384)
    # model = DiffCR(
    #         img_channel=13,
    #         width=32,
    #         middle_blk_num=1,
    #         enc_blk_nums=[1, 1, 1, 1],
    #         dec_blk_nums=[1, 1, 1, 1],
    #     )
    # # 使用 thop 的 profile 函数来获取 FLOPs 和参数量
    # flops, params = profile(model, inputs=(torch.randn(out_shape), torch.ones(1,), torch.randn(input_shape)))
    # print(f"FLOPs: {flops / 1e9} G")
    # print(f"Parameters: {params / 1e6} M")