File size: 33,924 Bytes
3c8ff2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 |
"""
UnCRtainTS Implementation
Author: Patrick Ebel (github/patrickTUM)
License: MIT
"""
import torch
import torch.nn as nn
import sys
sys.path.append("./model")
from src.backbones.utae import ConvLayer, ConvBlock, TemporallySharedBlock
from src.backbones.ltae import LTAE2d, LTAE2dtiny
S2_BANDS = 13
def get_norm_layer(out_channels, num_feats, n_groups=4, layer_type='batch'):
if layer_type == 'batch':
return nn.BatchNorm2d(out_channels)
elif layer_type == 'instance':
return nn.InstanceNorm2d(out_channels)
elif layer_type == 'group':
return nn.GroupNorm(num_channels=num_feats, num_groups=n_groups)
class ResidualConvBlock(TemporallySharedBlock):
def __init__(
self,
nkernels,
pad_value=None,
norm="batch",
n_groups=4,
#last_relu=True,
k=3, s=1, p=1,
padding_mode="reflect",
):
super(ResidualConvBlock, self).__init__(pad_value=pad_value)
self.conv1 = ConvLayer(
nkernels=nkernels,
norm=norm,
last_relu=True,
k=k, s=s, p=p,
n_groups=n_groups,
padding_mode=padding_mode,
)
self.conv2 = ConvLayer(
nkernels=nkernels,
norm=norm,
last_relu=True,
k=k, s=s, p=p,
n_groups=n_groups,
padding_mode=padding_mode,
)
self.conv3 = ConvLayer(
nkernels=nkernels,
#norm='none',
#last_relu=False,
norm=norm,
last_relu=True,
k=k, s=s, p=p,
n_groups=n_groups,
padding_mode=padding_mode,
)
def forward(self, input):
out1 = self.conv1(input) # followed by built-in ReLU & norm
out2 = self.conv2(out1) # followed by built-in ReLU & norm
out3 = input + self.conv3(out2) # omit norm & ReLU
return out3
class PreNorm(nn.Module):
def __init__(self, dim, fn, norm, n_groups=4):
super().__init__()
self.norm = get_norm_layer(dim, dim, n_groups, norm)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
class SE(nn.Module):
def __init__(self, inp, oup, expansion=0.25):
super().__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(oup, int(inp * expansion), bias=False),
nn.GELU(),
nn.Linear(int(inp * expansion), oup, bias=False),
nn.Sigmoid()
)
def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x).view(b, c)
y = self.fc(y).view(b, c, 1, 1)
return x * y
class MBConv(TemporallySharedBlock):
def __init__(self, inp, oup, downsample=False, expansion=4, norm='batch', n_groups=4):
super().__init__()
self.downsample = downsample
stride = 1 if self.downsample == False else 2
hidden_dim = int(inp * expansion)
if self.downsample:
self.pool = nn.MaxPool2d(3, 2, 1)
self.proj = nn.Conv2d(inp, oup, 1, stride=1, padding=0, bias=False)
if expansion == 1:
self.conv = nn.Sequential(
# dw
nn.Conv2d(hidden_dim, hidden_dim, 3, stride=stride,
padding=1, padding_mode='reflect', groups=hidden_dim, bias=False),
get_norm_layer(hidden_dim, hidden_dim, n_groups, norm),
nn.GELU(),
# pw-linear
nn.Conv2d(hidden_dim, oup, 1, stride=1, padding=0, bias=False),
get_norm_layer(oup, oup, n_groups, norm),
)
else:
self.conv = nn.Sequential(
# pw
# down-sample in the first conv
nn.Conv2d(inp, hidden_dim, 1, stride=stride, padding=0, bias=False),
get_norm_layer(hidden_dim, hidden_dim, n_groups, norm),
nn.GELU(),
# dw
nn.Conv2d(hidden_dim, hidden_dim, 3, stride=1, padding=1, padding_mode='reflect',
groups=hidden_dim, bias=False),
get_norm_layer(hidden_dim, hidden_dim, n_groups, norm),
nn.GELU(),
SE(inp, hidden_dim),
# pw-linear
nn.Conv2d(hidden_dim, oup, 1, stride=1, padding=0, bias=False),
get_norm_layer(oup, oup, n_groups, norm),
)
self.conv = PreNorm(inp, self.conv, norm, n_groups=4)
def forward(self, x):
if self.downsample:
return self.proj(self.pool(x)) + self.conv(x)
else:
return x + self.conv(x)
class Compact_Temporal_Aggregator(nn.Module):
def __init__(self, mode="mean"):
super(Compact_Temporal_Aggregator, self).__init__()
self.mode = mode
# moved dropout from ScaledDotProductAttention to here, applied after upsampling
self.attn_dropout = nn.Dropout(0.1) # no dropout via: nn.Dropout(0.0)
def forward(self, x, pad_mask=None, attn_mask=None):
if pad_mask is not None and pad_mask.any():
if self.mode == "att_group":
n_heads, b, t, h, w = attn_mask.shape
attn = attn_mask.view(n_heads * b, t, h, w)
if x.shape[-2] > w:
attn = nn.Upsample(
size=x.shape[-2:], mode="bilinear", align_corners=False
)(attn)
# this got moved out of ScaledDotProductAttention, apply after upsampling
attn = self.attn_dropout(attn)
else:
attn = nn.AvgPool2d(kernel_size=w // x.shape[-2])(attn)
attn = attn.view(n_heads, b, t, *x.shape[-2:])
attn = attn * (~pad_mask).float()[None, :, :, None, None]
out = torch.stack(x.chunk(n_heads, dim=2)) # hxBxTxC/hxHxW
out = attn[:, :, :, None, :, :] * out
out = out.sum(dim=2) # sum on temporal dim -> hxBxC/hxHxW
out = torch.cat([group for group in out], dim=1) # -> BxCxHxW
return out
elif self.mode == "att_mean":
attn = attn_mask.mean(dim=0) # average over heads -> BxTxHxW
attn = nn.Upsample(
size=x.shape[-2:], mode="bilinear", align_corners=False
)(attn)
# this got moved out of ScaledDotProductAttention, apply after upsampling
attn = self.attn_dropout(attn)
attn = attn * (~pad_mask).float()[:, :, None, None]
out = (x * attn[:, :, None, :, :]).sum(dim=1)
return out
elif self.mode == "mean":
out = x * (~pad_mask).float()[:, :, None, None, None]
out = out.sum(dim=1) / (~pad_mask).sum(dim=1)[:, None, None, None]
return out
else:
if self.mode == "att_group":
n_heads, b, t, h, w = attn_mask.shape
attn = attn_mask.view(n_heads * b, t, h, w)
if x.shape[-2] > w:
attn = nn.Upsample(
size=x.shape[-2:], mode="bilinear", align_corners=False
)(attn)
# this got moved out of ScaledDotProductAttention, apply after upsampling
attn = self.attn_dropout(attn)
else:
attn = nn.AvgPool2d(kernel_size=w // x.shape[-2])(attn)
attn = attn.view(n_heads, b, t, *x.shape[-2:])
out = torch.stack(x.chunk(n_heads, dim=2)) # hxBxTxC/hxHxW
out = attn[:, :, :, None, :, :] * out
out = out.sum(dim=2) # sum on temporal dim -> hxBxC/hxHxW
out = torch.cat([group for group in out], dim=1) # -> BxCxHxW
return out
elif self.mode == "att_mean":
attn = attn_mask.mean(dim=0) # average over heads -> BxTxHxW
attn = nn.Upsample(
size=x.shape[-2:], mode="bilinear", align_corners=False
)(attn)
# this got moved out of ScaledDotProductAttention, apply after upsampling
attn = self.attn_dropout(attn)
out = (x * attn[:, :, None, :, :]).sum(dim=1)
return out
elif self.mode == "mean":
return x.mean(dim=1)
def get_nonlinearity(mode, eps):
if mode=='relu': fct = nn.ReLU()
elif mode=='softplus': fct = lambda vars:nn.Softplus(beta=1, threshold=20)(vars) + eps
elif mode=='elu': fct = lambda vars: nn.ELU()(vars) + 1 + eps
else: fct = nn.Identity()
return fct
# class UNCRTAINTS(nn.Module):
# def __init__(
# self,
# input_dim,
# encoder_widths=[128],
# decoder_widths=[128,128,128,128,128],
# out_conv=[S2_BANDS],
# out_nonlin_mean=False,
# out_nonlin_var='relu',
# agg_mode="att_group",
# encoder_norm="group",
# decoder_norm="batch",
# n_head=16,
# d_model=256,
# d_k=4,
# pad_value=0,
# padding_mode="reflect",
# positional_encoding=True,
# covmode='diag',
# scale_by=1,
# separate_out=False,
# use_v=False,
# block_type='mbconv',
# is_mono=False
# ):
# """
# UnCRtainTS architecture for spatio-temporal encoding of satellite image time series.
# Args:
# input_dim (int): Number of channels in the input images.
# encoder_widths (List[int]): List giving the number of channels of the successive encoder_widths of the convolutional encoder.
# This argument also defines the number of encoder_widths (i.e. the number of downsampling steps +1)
# in the architecture.
# The number of channels are given from top to bottom, i.e. from the highest to the lowest resolution.
# decoder_widths (List[int], optional): Same as encoder_widths but for the decoder. The order in which the number of
# channels should be given is also from top to bottom. If this argument is not specified the decoder
# will have the same configuration as the encoder.
# out_conv (List[int]): Number of channels of the successive convolutions for the
# agg_mode (str): Aggregation mode for the skip connections. Can either be:
# - att_group (default) : Attention weighted temporal average, using the same
# channel grouping strategy as in the LTAE. The attention masks are bilinearly
# resampled to the resolution of the skipped feature maps.
# - att_mean : Attention weighted temporal average,
# using the average attention scores across heads for each date.
# - mean : Temporal average excluding padded dates.
# encoder_norm (str): Type of normalisation layer to use in the encoding branch. Can either be:
# - group : GroupNorm (default)
# - batch : BatchNorm
# - instance : InstanceNorm
# - none: apply no normalization
# decoder_norm (str): similar to encoder_norm
# n_head (int): Number of heads in LTAE.
# d_model (int): Parameter of LTAE
# d_k (int): Key-Query space dimension
# pad_value (float): Value used by the dataloader for temporal padding.
# padding_mode (str): Spatial padding strategy for convolutional layers (passed to nn.Conv2d).
# positional_encoding (bool): If False, no positional encoding is used (default True).
# """
# super(UNCRTAINTS, self).__init__()
# self.n_stages = len(encoder_widths)
# self.encoder_widths = encoder_widths
# self.decoder_widths = decoder_widths
# self.out_widths = out_conv
# self.is_mono = is_mono
# self.use_v = use_v
# self.block_type = block_type
# self.enc_dim = decoder_widths[0] if decoder_widths is not None else encoder_widths[0]
# self.stack_dim = sum(decoder_widths) if decoder_widths is not None else sum(encoder_widths)
# self.pad_value = pad_value
# self.padding_mode = padding_mode
# self.scale_by = scale_by
# self.separate_out = separate_out # define two separate layer streams for mean and variance predictions
# if decoder_widths is not None:
# assert encoder_widths[-1] == decoder_widths[-1]
# else: decoder_widths = encoder_widths
# # ENCODER
# self.in_conv = ConvBlock(
# nkernels=[input_dim] + [encoder_widths[0]],
# k=1, s=1, p=0,
# norm=encoder_norm,
# )
# if self.block_type=='mbconv':
# self.in_block = nn.ModuleList([MBConv(layer, layer, downsample=False, expansion=2, norm=encoder_norm) for layer in encoder_widths])
# elif self.block_type=='residual':
# self.in_block = nn.ModuleList([ResidualConvBlock(nkernels=[layer]+[layer], k=3, s=1, p=1, norm=encoder_norm, n_groups=4) for layer in encoder_widths])
# else: raise NotImplementedError
# if not self.is_mono:
# # LTAE
# if self.use_v:
# # same as standard LTAE, except we don't apply dropout on the low-resolution attention masks
# self.temporal_encoder = LTAE2d(
# in_channels=encoder_widths[0],
# d_model=d_model,
# n_head=n_head,
# mlp=[d_model, encoder_widths[0]], # MLP to map v, only used if self.use_v=True
# return_att=True,
# d_k=d_k,
# positional_encoding=positional_encoding,
# use_dropout=False
# )
# # linearly combine mask-weighted
# v_dim = encoder_widths[0]
# self.include_v = nn.Conv2d(encoder_widths[0]+v_dim, encoder_widths[0], 1)
# else:
# self.temporal_encoder = LTAE2dtiny(
# in_channels=encoder_widths[0],
# d_model=d_model,
# n_head=n_head,
# d_k=d_k,
# positional_encoding=positional_encoding,
# )
# self.temporal_aggregator = Compact_Temporal_Aggregator(mode=agg_mode)
# if self.block_type=='mbconv':
# self.out_block = nn.ModuleList([MBConv(layer, layer, downsample=False, expansion=2, norm=decoder_norm) for layer in decoder_widths])
# elif self.block_type=='residual':
# self.out_block = nn.ModuleList([ResidualConvBlock(nkernels=[layer]+[layer], k=3, s=1, p=1, norm=decoder_norm, n_groups=4) for layer in decoder_widths])
# else: raise NotImplementedError
# self.covmode = covmode
# if covmode=='uni':
# # batching across channel dimension
# covar_dim = S2_BANDS
# elif covmode=='iso':
# covar_dim = 1
# elif covmode=='diag':
# covar_dim = S2_BANDS
# else: covar_dim = 0
# self.mean_idx = S2_BANDS
# self.vars_idx = self.mean_idx + covar_dim
# # note: not including normalization layer and ReLU nonlinearity into the final ConvBlock
# # if inserting >1 layers into out_conv then consider treating normalizations separately
# self.out_dims = out_conv[-1]
# eps = 1e-9 if self.scale_by==1.0 else 1e-3
# if self.separate_out: # define two separate layer streams for mean and variance predictions
# self.out_conv_mean_1 = ConvBlock(nkernels=[decoder_widths[0]] + [S2_BANDS], k=1, s=1, p=0, norm='none', last_relu=False)
# if self.out_dims - self.mean_idx > 0:
# self.out_conv_var_1 = ConvBlock(nkernels=[decoder_widths[0]] + [self.out_dims - S2_BANDS], k=1, s=1, p=0, norm='none', last_relu=False)
# else:
# self.out_conv = ConvBlock(nkernels=[decoder_widths[0]] + out_conv, k=1, s=1, p=0, norm='none', last_relu=False)
# # set output nonlinearities
# if out_nonlin_mean: self.out_mean = lambda vars: self.scale_by * nn.Sigmoid()(vars) # this is for predicting mean values in [0, 1]
# else: self.out_mean = nn.Identity() # just keep the mean estimates, without applying a nonlinearity
# if self.covmode in ['uni', 'iso', 'diag']:
# self.diag_var = get_nonlinearity(out_nonlin_var, eps)
# def forward(self, input, batch_positions=None):
# print(input.shape)
# pad_mask = (
# (input == self.pad_value).all(dim=-1).all(dim=-1).all(dim=-1)
# ) # BxT pad mask
# # SPATIAL ENCODER
# # collect feature maps in list 'feature_maps'
# out = self.in_conv.smart_forward(input)
# for layer in self.in_block:
# out = layer.smart_forward(out)
# if not self.is_mono:
# att_down = 32
# down = nn.AdaptiveMaxPool2d((att_down, att_down))(out.view(out.shape[0] * out.shape[1], *out.shape[2:])).view(out.shape[0], out.shape[1], out.shape[2], att_down, att_down)
# # TEMPORAL ENCODER
# if self.use_v:
# v, att = self.temporal_encoder(down, batch_positions=batch_positions, pad_mask=pad_mask)
# else:
# att = self.temporal_encoder(down, batch_positions=batch_positions, pad_mask=pad_mask)
# out = self.temporal_aggregator(out, pad_mask=pad_mask, attn_mask=att)
# if self.use_v:
# # upsample values to input resolution, then linearly combine with attention masks
# up_v = nn.Upsample(size=(out.shape[-2:]), mode="bilinear", align_corners=False)(v)
# out = self.include_v(torch.cat((out, up_v), dim=1))
# else: out = out.squeeze(dim=1)
# # SPATIAL DECODER
# for layer in self.out_block:
# out = layer.smart_forward(out)
# if self.separate_out:
# out_mean_1 = self.out_conv_mean_1(out)
# if self.out_dims - self.mean_idx > 0:
# out_var_1 = self.out_conv_var_1(out)
# out = torch.cat((out_mean_1, out_var_1), dim=1)
# else: out = out_mean_1 #out = out_mean_2
# else:
# out = self.out_conv(out) # predict mean and var in single layer
# # append a singelton temporal dimension such that outputs are [B x T=1 x C x H x W]
# out = out.unsqueeze(dim=1)
# # apply output nonlinearities
# # get mean predictions
# out_loc = self.out_mean(out[:,:,:self.mean_idx,...]) # mean predictions in [0,1]
# if not self.covmode: return out_loc
# out_cov = self.diag_var(out[:,:,self.mean_idx:self.vars_idx,...]) # var predictions > 0
# out = torch.cat((out_loc, out_cov), dim=2) # stack mean and var predictions plus cloud masks
# print(f"{out.shape}")
# return out
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial
import math
from abc import abstractmethod
class EmbedBlock(nn.Module):
"""
Any module where forward() takes embeddings as a second argument.
"""
@abstractmethod
def forward(self, x, emb):
"""
Apply the module to `x` given `emb` embeddings.
"""
class EmbedSequential(nn.Sequential, EmbedBlock):
"""
A sequential module that passes embeddings to the children that
support it as an extra input.
"""
def forward(self, x, emb):
for layer in self:
if isinstance(layer, EmbedBlock):
x = layer(x, emb)
else:
x = layer(x)
return x
def gamma_embedding(gammas, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param gammas: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an [N x dim] Tensor of positional embeddings.
"""
half = dim // 2
freqs = torch.exp(
-math.log(max_period) * torch.arange(start=0,
end=half, dtype=torch.float32) / half
).to(device=gammas.device)
args = gammas[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat(
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
class LayerNormFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, x, weight, bias, eps):
ctx.eps = eps
N, C, H, W = x.size()
mu = x.mean(1, keepdim=True)
var = (x - mu).pow(2).mean(1, keepdim=True)
y = (x - mu) / (var + eps).sqrt()
ctx.save_for_backward(y, var, weight)
y = weight.view(1, C, 1, 1) * y + bias.view(1, C, 1, 1)
return y
@staticmethod
def backward(ctx, grad_output):
eps = ctx.eps
N, C, H, W = grad_output.size()
y, var, weight = ctx.saved_variables
g = grad_output * weight.view(1, C, 1, 1)
mean_g = g.mean(dim=1, keepdim=True)
mean_gy = (g * y).mean(dim=1, keepdim=True)
gx = 1. / torch.sqrt(var + eps) * (g - y * mean_gy - mean_g)
return gx, (grad_output * y).sum(dim=3).sum(dim=2).sum(dim=0), grad_output.sum(dim=3).sum(dim=2).sum(
dim=0), None
class LayerNorm2d(nn.Module):
def __init__(self, channels, eps=1e-6):
super(LayerNorm2d, self).__init__()
self.register_parameter('weight', nn.Parameter(torch.ones(channels)))
self.register_parameter('bias', nn.Parameter(torch.zeros(channels)))
self.eps = eps
def forward(self, x):
return LayerNormFunction.apply(x, self.weight, self.bias, self.eps)
class SimpleGate(nn.Module):
def forward(self, x):
x1, x2 = x.chunk(2, dim=1)
return x1 * x2
class CondNAFBlock(nn.Module):
def __init__(self, c, DW_Expand=2, FFN_Expand=2, drop_out_rate=0.):
super().__init__()
dw_channel = c * DW_Expand
self.conv1 = nn.Conv2d(in_channels=c, out_channels=dw_channel,
kernel_size=1, padding=0, stride=1, groups=1, bias=True)
self.conv2 = nn.Conv2d(in_channels=dw_channel, out_channels=dw_channel, kernel_size=3, padding=1, stride=1, groups=dw_channel,
bias=True)
self.conv3 = nn.Conv2d(in_channels=dw_channel // 2, out_channels=c,
kernel_size=1, padding=0, stride=1, groups=1, bias=True)
# Simplified Channel Attention
# self.sca = nn.Sequential(
# nn.AdaptiveAvgPool2d(1),
# nn.Conv2d(in_channels=dw_channel // 2, out_channels=dw_channel // 2, kernel_size=1, padding=0, stride=1,
# groups=1, bias=True),
# )
self.sca_avg = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(in_channels=dw_channel // 4, out_channels=dw_channel // 4, kernel_size=1, padding=0, stride=1,
groups=1, bias=True),
)
self.sca_max = nn.Sequential(
nn.AdaptiveMaxPool2d(1),
nn.Conv2d(in_channels=dw_channel // 4, out_channels=dw_channel // 4, kernel_size=1, padding=0, stride=1,
groups=1, bias=True),
)
# SimpleGate
self.sg = SimpleGate()
ffn_channel = FFN_Expand * c
self.conv4 = nn.Conv2d(in_channels=c, out_channels=ffn_channel,
kernel_size=1, padding=0, stride=1, groups=1, bias=True)
self.conv5 = nn.Conv2d(in_channels=ffn_channel // 2, out_channels=c,
kernel_size=1, padding=0, stride=1, groups=1, bias=True)
self.norm1 = LayerNorm2d(c)
self.norm2 = LayerNorm2d(c)
self.dropout1 = nn.Dropout(
drop_out_rate) if drop_out_rate > 0. else nn.Identity()
self.dropout2 = nn.Dropout(
drop_out_rate) if drop_out_rate > 0. else nn.Identity()
self.beta = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True)
self.gamma = nn.Parameter(torch.zeros(
(1, c, 1, 1)), requires_grad=True)
def forward(self, inp):
x = inp
x = self.norm1(x)
x = self.conv1(x)
x = self.conv2(x)
x = self.sg(x)
x_avg, x_max = x.chunk(2, dim=1)
x_avg = self.sca_avg(x_avg)*x_avg
x_max = self.sca_max(x_max)*x_max
x = torch.cat([x_avg, x_max], dim=1)
x = self.conv3(x)
x = self.dropout1(x)
y = inp + x * self.beta
x = self.conv4(self.norm2(y))
x = self.sg(x)
x = self.conv5(x)
x = self.dropout2(x)
return y + x * self.gamma
class NAFBlock(nn.Module):
def __init__(self, c, DW_Expand=2, FFN_Expand=2, drop_out_rate=0.):
super().__init__()
dw_channel = c * DW_Expand
self.conv1 = nn.Conv2d(in_channels=c, out_channels=dw_channel,
kernel_size=1, padding=0, stride=1, groups=1, bias=True)
self.conv2 = nn.Conv2d(in_channels=dw_channel, out_channels=dw_channel, kernel_size=3, padding=1, stride=1, groups=dw_channel,
bias=True)
self.conv3 = nn.Conv2d(in_channels=dw_channel // 2, out_channels=c,
kernel_size=1, padding=0, stride=1, groups=1, bias=True)
# Simplified Channel Attention
# self.sca = nn.Sequential(
# nn.AdaptiveAvgPool2d(1),
# nn.Conv2d(in_channels=dw_channel // 2, out_channels=dw_channel // 2, kernel_size=1, padding=0, stride=1,
# groups=1, bias=True),
# )
self.sca_avg = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(in_channels=dw_channel // 4, out_channels=dw_channel // 4, kernel_size=1, padding=0, stride=1,
groups=1, bias=True),
)
self.sca_max = nn.Sequential(
nn.AdaptiveMaxPool2d(1),
nn.Conv2d(in_channels=dw_channel // 4, out_channels=dw_channel // 4, kernel_size=1, padding=0, stride=1,
groups=1, bias=True),
)
# SimpleGate
self.sg = SimpleGate()
ffn_channel = FFN_Expand * c
self.conv4 = nn.Conv2d(in_channels=c, out_channels=ffn_channel,
kernel_size=1, padding=0, stride=1, groups=1, bias=True)
self.conv5 = nn.Conv2d(in_channels=ffn_channel // 2, out_channels=c,
kernel_size=1, padding=0, stride=1, groups=1, bias=True)
self.norm1 = LayerNorm2d(c)
self.norm2 = LayerNorm2d(c)
self.dropout1 = nn.Dropout(
drop_out_rate) if drop_out_rate > 0. else nn.Identity()
self.dropout2 = nn.Dropout(
drop_out_rate) if drop_out_rate > 0. else nn.Identity()
self.beta = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True)
self.gamma = nn.Parameter(torch.zeros(
(1, c, 1, 1)), requires_grad=True)
# self.time_emb = nn.Sequential(
# nn.SiLU(),
# nn.Linear(256, c),
# )
def forward(self, inp):
x = inp
x = self.norm1(x)
x = self.conv1(x)
x = self.conv2(x)
x = self.sg(x)
x_avg, x_max = x.chunk(2, dim=1)
x_avg = self.sca_avg(x_avg)*x_avg
x_max = self.sca_max(x_max)*x_max
x = torch.cat([x_avg, x_max], dim=1)
x = self.conv3(x)
x = self.dropout1(x)
y = inp + x * self.beta
# y = y+self.time_emb(t)[..., None, None]
x = self.conv4(self.norm2(y))
x = self.sg(x)
x = self.conv5(x)
x = self.dropout2(x)
return y + x * self.gamma
class UNCRTAINTS(nn.Module):
def __init__(
self,
input_dim=15,
out_conv=[13],
width=64,
middle_blk_num=1,
enc_blk_nums=[1, 1, 1, 1],
dec_blk_nums=[1, 1, 1, 1],
encoder_widths=[128],
decoder_widths=[128,128,128,128,128],
out_nonlin_mean=False,
out_nonlin_var='relu',
agg_mode="att_group",
encoder_norm="group",
decoder_norm="batch",
n_head=16,
d_model=256,
d_k=4,
pad_value=0,
padding_mode="reflect",
positional_encoding=True,
covmode='diag',
scale_by=1,
separate_out=False,
use_v=False,
block_type='mbconv',
is_mono=False
):
super().__init__()
self.intro = nn.Conv2d(in_channels=input_dim, out_channels=width, kernel_size=3, padding=1, stride=1, groups=1,
bias=True)
# self.cond_intro = nn.Conv2d(in_channels=img_channel+2, out_channels=width, kernel_size=3, padding=1, stride=1, groups=1,
# bias=True)
self.ending = nn.Conv2d(in_channels=width, out_channels=out_conv[0], kernel_size=3, padding=1, stride=1, groups=1,
bias=True)
# self.inp_ending = nn.Conv2d(in_channels=img_channel, out_channels=3, kernel_size=3, padding=1, stride=1, groups=1,
# bias=True)
self.encoders = nn.ModuleList()
self.cond_encoders = nn.ModuleList()
self.decoders = nn.ModuleList()
self.middle_blks = nn.ModuleList()
self.ups = nn.ModuleList()
self.downs = nn.ModuleList()
self.cond_downs = nn.ModuleList()
chan = width
for num in enc_blk_nums:
self.encoders.append(
nn.Sequential(
*[NAFBlock(chan) for _ in range(num)]
)
)
self.cond_encoders.append(
nn.Sequential(
*[CondNAFBlock(chan) for _ in range(num)]
)
)
self.downs.append(
nn.Conv2d(chan, 2*chan, 2, 2)
)
# self.cond_downs.append(
# nn.Conv2d(chan, 2*chan, 2, 2)
# )
chan = chan * 2
self.middle_blks = \
nn.Sequential(
*[NAFBlock(chan) for _ in range(middle_blk_num)]
)
for num in dec_blk_nums:
self.ups.append(
nn.Sequential(
nn.Conv2d(chan, chan * 2, 1, bias=False),
nn.PixelShuffle(2)
)
)
chan = chan // 2
self.decoders.append(
nn.Sequential(
*[NAFBlock(chan) for _ in range(num)]
)
)
self.padder_size = 2 ** len(self.encoders)
# self.map = nn.Sequential(
# nn.Linear(64, 256),
# nn.SiLU(),
# nn.Linear(256, 256),
# )
def forward(self, inp, batch_positions):
# inp = self.check_image_size(inp)
inp = inp.squeeze(1)
x = self.intro(inp)
encs = []
for encoder, down in zip(self.encoders, self.downs):
x = encoder(x)
# b, c, h, w = cond.shape
# tmp_cond = cond.view(b//3, 3, c, h, w).sum(dim=1)
# tmp_cond = cond
# x = x + tmp_cond
encs.append(x)
x = down(x)
# cond = cond_down(cond)
x = self.middle_blks(x)
for decoder, up, enc_skip in zip(self.decoders, self.ups, encs[::-1]):
x = up(x)
x = x + enc_skip
x = decoder(x)
x = self.ending(x)
# x = x + self.inp_ending(inp)
# print(x.shape)
return x.unsqueeze(1)
def check_image_size(self, x):
_, _, h, w = x.size()
mod_pad_h = (self.padder_size - h %
self.padder_size) % self.padder_size
mod_pad_w = (self.padder_size - w %
self.padder_size) % self.padder_size
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h))
return x
if __name__ == '__main__':
# unit test for ground resolution
inp = torch.randn(1, 15, 256, 256)
net = UNCRTAINTS(
input_dim=15,
out_conv=[13],
width=64,
middle_blk_num=1,
enc_blk_nums=[1, 1, 1, 1],
dec_blk_nums=[1, 1, 1, 1],
)
out = net(inp)
assert out.shape == (1, 13, 256, 256)
# from thop import profile
# out_shape = (1, 12, 384, 384)
# input_shape = (1, 13, 384, 384)
# model = DiffCR(
# img_channel=13,
# width=32,
# middle_blk_num=1,
# enc_blk_nums=[1, 1, 1, 1],
# dec_blk_nums=[1, 1, 1, 1],
# )
# # 使用 thop 的 profile 函数来获取 FLOPs 和参数量
# flops, params = profile(model, inputs=(torch.randn(out_shape), torch.ones(1,), torch.randn(input_shape)))
# print(f"FLOPs: {flops / 1e9} G")
# print(f"Parameters: {params / 1e6} M")
# if __name__=='__main__':
# inp = torch.rand(1, 15, 256, 256)
# net = UNCRTAINTS(
# input_dim=15,
# out_conv=[13],
# )
# out = net(inp)
# assert out.shape==(1, 13, 256, 256) |