File size: 33,924 Bytes
3c8ff2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
"""
UnCRtainTS Implementation
Author: Patrick Ebel (github/patrickTUM)
License: MIT
"""

import torch
import torch.nn as nn
import sys
sys.path.append("./model")
from src.backbones.utae import ConvLayer, ConvBlock, TemporallySharedBlock
from src.backbones.ltae import LTAE2d, LTAE2dtiny

S2_BANDS = 13


def get_norm_layer(out_channels, num_feats, n_groups=4, layer_type='batch'):
    if layer_type == 'batch':
        return nn.BatchNorm2d(out_channels)
    elif layer_type == 'instance':
        return nn.InstanceNorm2d(out_channels)
    elif layer_type == 'group':
        return nn.GroupNorm(num_channels=num_feats, num_groups=n_groups)

class ResidualConvBlock(TemporallySharedBlock):
    def __init__(
        self,
        nkernels,
        pad_value=None,
        norm="batch",
        n_groups=4,
        #last_relu=True,
        k=3, s=1, p=1,
        padding_mode="reflect",
    ):
        super(ResidualConvBlock, self).__init__(pad_value=pad_value)

        self.conv1 = ConvLayer(
            nkernels=nkernels,
            norm=norm,
            last_relu=True,
            k=k, s=s, p=p,
            n_groups=n_groups,
            padding_mode=padding_mode,
        )
        self.conv2 = ConvLayer(
            nkernels=nkernels,
            norm=norm,
            last_relu=True,
            k=k, s=s, p=p,
            n_groups=n_groups,
            padding_mode=padding_mode,
        )
        self.conv3 = ConvLayer(
            nkernels=nkernels,
            #norm='none',
            #last_relu=False,
            norm=norm,
            last_relu=True,
            k=k, s=s, p=p,
            n_groups=n_groups,
            padding_mode=padding_mode,
        )

    def forward(self, input):

        out1 = self.conv1(input)        # followed by built-in ReLU & norm
        out2 = self.conv2(out1)         # followed by built-in ReLU & norm
        out3 = input + self.conv3(out2) # omit norm & ReLU
        return out3


class PreNorm(nn.Module):
    def __init__(self, dim, fn, norm, n_groups=4):
        super().__init__()
        self.norm = get_norm_layer(dim, dim, n_groups, norm)
        self.fn = fn

    def forward(self, x, **kwargs):
        return self.fn(self.norm(x), **kwargs)


class SE(nn.Module):
    def __init__(self, inp, oup, expansion=0.25):
        super().__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Sequential(
            nn.Linear(oup, int(inp * expansion), bias=False),
            nn.GELU(),
            nn.Linear(int(inp * expansion), oup, bias=False),
            nn.Sigmoid()
        )

    def forward(self, x):
        b, c, _, _ = x.size()
        y = self.avg_pool(x).view(b, c)
        y = self.fc(y).view(b, c, 1, 1)
        return x * y

    
class MBConv(TemporallySharedBlock):
    def __init__(self, inp, oup, downsample=False, expansion=4, norm='batch', n_groups=4):
        super().__init__()
        self.downsample = downsample
        stride = 1 if self.downsample == False else 2
        hidden_dim = int(inp * expansion)

        if self.downsample:
            self.pool = nn.MaxPool2d(3, 2, 1)
            self.proj = nn.Conv2d(inp, oup, 1, stride=1, padding=0, bias=False)

        if expansion == 1:
            self.conv = nn.Sequential(
                # dw
                nn.Conv2d(hidden_dim, hidden_dim, 3, stride=stride,
                          padding=1, padding_mode='reflect', groups=hidden_dim, bias=False),
                get_norm_layer(hidden_dim, hidden_dim, n_groups, norm),
                nn.GELU(),
                # pw-linear
                nn.Conv2d(hidden_dim, oup, 1, stride=1, padding=0, bias=False),
                get_norm_layer(oup, oup, n_groups, norm),
            )
        else:
            self.conv = nn.Sequential(
                # pw
                # down-sample in the first conv
                nn.Conv2d(inp, hidden_dim, 1, stride=stride, padding=0, bias=False),
                get_norm_layer(hidden_dim, hidden_dim, n_groups, norm),
                nn.GELU(),
                # dw
                nn.Conv2d(hidden_dim, hidden_dim, 3, stride=1, padding=1, padding_mode='reflect',
                          groups=hidden_dim, bias=False),
                get_norm_layer(hidden_dim, hidden_dim, n_groups, norm),
                nn.GELU(),
                SE(inp, hidden_dim),
                # pw-linear
                nn.Conv2d(hidden_dim, oup, 1, stride=1, padding=0, bias=False),
                get_norm_layer(oup, oup, n_groups, norm), 
            )
        
        self.conv = PreNorm(inp, self.conv, norm, n_groups=4)

    def forward(self, x):
        if self.downsample:
            return self.proj(self.pool(x)) + self.conv(x)
        else:
            return x + self.conv(x)


class Compact_Temporal_Aggregator(nn.Module):
    def __init__(self, mode="mean"):
        super(Compact_Temporal_Aggregator, self).__init__()
        self.mode = mode
        # moved dropout from ScaledDotProductAttention to here, applied after upsampling 
        self.attn_dropout = nn.Dropout(0.1) # no dropout via: nn.Dropout(0.0)

    def forward(self, x, pad_mask=None, attn_mask=None):
        if pad_mask is not None and pad_mask.any():
            if self.mode == "att_group":
                n_heads, b, t, h, w = attn_mask.shape
                attn = attn_mask.view(n_heads * b, t, h, w)

                if x.shape[-2] > w:
                    attn = nn.Upsample(
                        size=x.shape[-2:], mode="bilinear", align_corners=False
                    )(attn)
                    # this got moved out of ScaledDotProductAttention, apply after upsampling
                    attn = self.attn_dropout(attn)
                else:
                    attn = nn.AvgPool2d(kernel_size=w // x.shape[-2])(attn)

                attn = attn.view(n_heads, b, t, *x.shape[-2:])
                attn = attn * (~pad_mask).float()[None, :, :, None, None]

                out = torch.stack(x.chunk(n_heads, dim=2))  # hxBxTxC/hxHxW
                out = attn[:, :, :, None, :, :] * out
                out = out.sum(dim=2)  # sum on temporal dim -> hxBxC/hxHxW
                out = torch.cat([group for group in out], dim=1)  # -> BxCxHxW
                return out
            elif self.mode == "att_mean":
                attn = attn_mask.mean(dim=0)  # average over heads -> BxTxHxW
                attn = nn.Upsample(
                    size=x.shape[-2:], mode="bilinear", align_corners=False
                )(attn)
                # this got moved out of ScaledDotProductAttention, apply after upsampling
                attn = self.attn_dropout(attn)
                attn = attn * (~pad_mask).float()[:, :, None, None]
                out = (x * attn[:, :, None, :, :]).sum(dim=1)
                return out
            elif self.mode == "mean":
                out = x * (~pad_mask).float()[:, :, None, None, None]
                out = out.sum(dim=1) / (~pad_mask).sum(dim=1)[:, None, None, None]
                return out
        else:
            if self.mode == "att_group":
                n_heads, b, t, h, w = attn_mask.shape
                attn = attn_mask.view(n_heads * b, t, h, w)
                if x.shape[-2] > w:
                    attn = nn.Upsample(
                        size=x.shape[-2:], mode="bilinear", align_corners=False
                    )(attn)
                    # this got moved out of ScaledDotProductAttention, apply after upsampling
                    attn = self.attn_dropout(attn)
                else:
                    attn = nn.AvgPool2d(kernel_size=w // x.shape[-2])(attn)
                attn = attn.view(n_heads, b, t, *x.shape[-2:])
                out = torch.stack(x.chunk(n_heads, dim=2))  # hxBxTxC/hxHxW
                out = attn[:, :, :, None, :, :] * out
                out = out.sum(dim=2)  # sum on temporal dim -> hxBxC/hxHxW
                out = torch.cat([group for group in out], dim=1)  # -> BxCxHxW
                return out
            elif self.mode == "att_mean":
                attn = attn_mask.mean(dim=0)  # average over heads -> BxTxHxW
                attn = nn.Upsample(
                    size=x.shape[-2:], mode="bilinear", align_corners=False
                )(attn)
                # this got moved out of ScaledDotProductAttention, apply after upsampling
                attn = self.attn_dropout(attn)
                out = (x * attn[:, :, None, :, :]).sum(dim=1)
                return out
            elif self.mode == "mean":
                return x.mean(dim=1)

def get_nonlinearity(mode, eps):
    if mode=='relu':        fct = nn.ReLU() 
    elif mode=='softplus':  fct = lambda vars:nn.Softplus(beta=1, threshold=20)(vars) + eps
    elif mode=='elu':       fct = lambda vars: nn.ELU()(vars) + 1 + eps  
    else:                   fct = nn.Identity()
    return fct

# class UNCRTAINTS(nn.Module):
#     def __init__(
#         self,
#         input_dim,
#         encoder_widths=[128],
#         decoder_widths=[128,128,128,128,128],
#         out_conv=[S2_BANDS],
#         out_nonlin_mean=False,
#         out_nonlin_var='relu',
#         agg_mode="att_group",
#         encoder_norm="group",
#         decoder_norm="batch",
#         n_head=16,
#         d_model=256,
#         d_k=4,
#         pad_value=0,
#         padding_mode="reflect",
#         positional_encoding=True,
#         covmode='diag',
#         scale_by=1,
#         separate_out=False,
#         use_v=False,
#         block_type='mbconv',
#         is_mono=False
#     ):
#         """
#         UnCRtainTS architecture for spatio-temporal encoding of satellite image time series.
#         Args:
#             input_dim (int): Number of channels in the input images.
#             encoder_widths (List[int]): List giving the number of channels of the successive encoder_widths of the convolutional encoder.
#             This argument also defines the number of encoder_widths (i.e. the number of downsampling steps +1)
#             in the architecture.
#             The number of channels are given from top to bottom, i.e. from the highest to the lowest resolution.
#             decoder_widths (List[int], optional): Same as encoder_widths but for the decoder. The order in which the number of
#             channels should be given is also from top to bottom. If this argument is not specified the decoder
#             will have the same configuration as the encoder.
#             out_conv (List[int]): Number of channels of the successive convolutions for the
#             agg_mode (str): Aggregation mode for the skip connections. Can either be:
#                 - att_group (default) : Attention weighted temporal average, using the same
#                 channel grouping strategy as in the LTAE. The attention masks are bilinearly
#                 resampled to the resolution of the skipped feature maps.
#                 - att_mean : Attention weighted temporal average,
#                  using the average attention scores across heads for each date.
#                 - mean : Temporal average excluding padded dates.
#             encoder_norm (str): Type of normalisation layer to use in the encoding branch. Can either be:
#                 - group : GroupNorm (default)
#                 - batch : BatchNorm
#                 - instance : InstanceNorm
#                 - none: apply no normalization
#             decoder_norm (str): similar to encoder_norm
#             n_head (int): Number of heads in LTAE.
#             d_model (int): Parameter of LTAE
#             d_k (int): Key-Query space dimension
#             pad_value (float): Value used by the dataloader for temporal padding.
#             padding_mode (str): Spatial padding strategy for convolutional layers (passed to nn.Conv2d).
#             positional_encoding (bool): If False, no positional encoding is used (default True).
#         """
#         super(UNCRTAINTS, self).__init__()
#         self.n_stages       = len(encoder_widths)
#         self.encoder_widths = encoder_widths
#         self.decoder_widths = decoder_widths
#         self.out_widths     = out_conv
#         self.is_mono        = is_mono
#         self.use_v          = use_v
#         self.block_type     = block_type

#         self.enc_dim        = decoder_widths[0] if decoder_widths is not None else encoder_widths[0]
#         self.stack_dim      = sum(decoder_widths) if decoder_widths is not None else sum(encoder_widths)
#         self.pad_value      = pad_value
#         self.padding_mode   = padding_mode

#         self.scale_by       = scale_by
#         self.separate_out   = separate_out # define two separate layer streams for mean and variance predictions

#         if decoder_widths is not None:
#             assert encoder_widths[-1] == decoder_widths[-1]
#         else: decoder_widths = encoder_widths


#         # ENCODER
#         self.in_conv = ConvBlock(
#             nkernels=[input_dim] + [encoder_widths[0]],
#             k=1, s=1, p=0,
#             norm=encoder_norm,
#         )

#         if self.block_type=='mbconv':
#             self.in_block = nn.ModuleList([MBConv(layer, layer, downsample=False, expansion=2, norm=encoder_norm) for layer in encoder_widths])
#         elif self.block_type=='residual':
#             self.in_block = nn.ModuleList([ResidualConvBlock(nkernels=[layer]+[layer], k=3, s=1, p=1, norm=encoder_norm, n_groups=4) for layer in encoder_widths])
#         else: raise NotImplementedError

#         if not self.is_mono:
#             # LTAE
#             if self.use_v:
#                 # same as standard LTAE, except we don't apply dropout on the low-resolution attention masks
#                 self.temporal_encoder = LTAE2d(
#                     in_channels=encoder_widths[0], 
#                     d_model=d_model,
#                     n_head=n_head,
#                     mlp=[d_model, encoder_widths[0]], # MLP to map v, only used if self.use_v=True
#                     return_att=True,
#                     d_k=d_k,
#                     positional_encoding=positional_encoding,
#                     use_dropout=False
#                 )
#                 # linearly combine mask-weighted
#                 v_dim = encoder_widths[0]
#                 self.include_v = nn.Conv2d(encoder_widths[0]+v_dim, encoder_widths[0], 1)
#             else:
#                 self.temporal_encoder = LTAE2dtiny(
#                     in_channels=encoder_widths[0],
#                     d_model=d_model,
#                     n_head=n_head,
#                     d_k=d_k,
#                     positional_encoding=positional_encoding,
#                 )
            
#             self.temporal_aggregator = Compact_Temporal_Aggregator(mode=agg_mode)

#         if self.block_type=='mbconv':
#             self.out_block = nn.ModuleList([MBConv(layer, layer, downsample=False, expansion=2, norm=decoder_norm) for layer in decoder_widths])
#         elif self.block_type=='residual':
#             self.out_block = nn.ModuleList([ResidualConvBlock(nkernels=[layer]+[layer], k=3, s=1, p=1, norm=decoder_norm, n_groups=4) for layer in decoder_widths])
#         else: raise NotImplementedError


#         self.covmode = covmode
#         if covmode=='uni':
#             # batching across channel dimension
#             covar_dim = S2_BANDS
#         elif covmode=='iso':
#             covar_dim = 1
#         elif covmode=='diag':
#             covar_dim = S2_BANDS
#         else: covar_dim = 0 

#         self.mean_idx = S2_BANDS
#         self.vars_idx = self.mean_idx + covar_dim

#         # note: not including normalization layer and ReLU nonlinearity into the final ConvBlock
#         #       if inserting >1 layers into out_conv then consider treating normalizations separately
#         self.out_dims = out_conv[-1]

#         eps = 1e-9 if self.scale_by==1.0 else 1e-3

#         if self.separate_out: # define two separate layer streams for mean and variance predictions
#             self.out_conv_mean_1 = ConvBlock(nkernels=[decoder_widths[0]] + [S2_BANDS], k=1, s=1, p=0, norm='none', last_relu=False)
#             if self.out_dims - self.mean_idx > 0:
#                 self.out_conv_var_1 = ConvBlock(nkernels=[decoder_widths[0]] + [self.out_dims - S2_BANDS], k=1, s=1, p=0, norm='none', last_relu=False)
#         else: 
#             self.out_conv = ConvBlock(nkernels=[decoder_widths[0]] + out_conv, k=1, s=1, p=0, norm='none', last_relu=False)

#         # set output nonlinearities
#         if out_nonlin_mean: self.out_mean  = lambda vars: self.scale_by * nn.Sigmoid()(vars)    # this is for predicting mean values in [0, 1]
#         else: self.out_mean  = nn.Identity()                                                    # just keep the mean estimates, without applying a nonlinearity

#         if self.covmode in ['uni', 'iso', 'diag']:
#             self.diag_var   = get_nonlinearity(out_nonlin_var, eps)


#     def forward(self, input, batch_positions=None):
#         print(input.shape)
#         pad_mask = (
#             (input == self.pad_value).all(dim=-1).all(dim=-1).all(dim=-1)
#         )  # BxT pad mask
#         # SPATIAL ENCODER
#         # collect feature maps in list 'feature_maps'
#         out = self.in_conv.smart_forward(input)

#         for layer in self.in_block:
#             out = layer.smart_forward(out)

#         if not self.is_mono:
#             att_down = 32
#             down = nn.AdaptiveMaxPool2d((att_down, att_down))(out.view(out.shape[0] * out.shape[1], *out.shape[2:])).view(out.shape[0], out.shape[1], out.shape[2], att_down, att_down)

#             # TEMPORAL ENCODER
#             if self.use_v:
#                 v, att = self.temporal_encoder(down, batch_positions=batch_positions, pad_mask=pad_mask)
#             else:
#                 att = self.temporal_encoder(down, batch_positions=batch_positions, pad_mask=pad_mask)

#             out = self.temporal_aggregator(out, pad_mask=pad_mask, attn_mask=att)

#             if self.use_v:
#                 # upsample values to input resolution, then linearly combine with attention masks
#                 up_v = nn.Upsample(size=(out.shape[-2:]), mode="bilinear", align_corners=False)(v)
#                 out  = self.include_v(torch.cat((out, up_v), dim=1)) 
#         else: out = out.squeeze(dim=1)

#         # SPATIAL DECODER
#         for layer in self.out_block:
#             out = layer.smart_forward(out)

#         if self.separate_out:
#             out_mean_1 = self.out_conv_mean_1(out)

#             if self.out_dims - self.mean_idx > 0:
#                 out_var_1 = self.out_conv_var_1(out)
#                 out   = torch.cat((out_mean_1, out_var_1), dim=1)
#             else: out = out_mean_1 #out = out_mean_2
#         else:
#             out = self.out_conv(out) # predict mean and var in single layer
        

#         # append a singelton temporal dimension such that outputs are [B x T=1 x C x H x W]
#         out = out.unsqueeze(dim=1)

#         # apply output nonlinearities

#         # get mean predictions
#         out_loc   = self.out_mean(out[:,:,:self.mean_idx,...])                      # mean predictions in [0,1]
#         if not self.covmode: return out_loc

#         out_cov = self.diag_var(out[:,:,self.mean_idx:self.vars_idx,...])           # var predictions > 0
#         out     = torch.cat((out_loc, out_cov), dim=2)                              # stack mean and var predictions plus cloud masks
#         print(f"{out.shape}")
#         return out

import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial
import math
from abc import abstractmethod


class EmbedBlock(nn.Module):
    """
    Any module where forward() takes embeddings as a second argument.
    """

    @abstractmethod
    def forward(self, x, emb):
        """
        Apply the module to `x` given `emb` embeddings.
        """


class EmbedSequential(nn.Sequential, EmbedBlock):
    """
    A sequential module that passes embeddings to the children that
    support it as an extra input.
    """

    def forward(self, x, emb):
        for layer in self:
            if isinstance(layer, EmbedBlock):
                x = layer(x, emb)
            else:
                x = layer(x)
        return x


def gamma_embedding(gammas, dim, max_period=10000):
    """
    Create sinusoidal timestep embeddings.
    :param gammas: a 1-D Tensor of N indices, one per batch element.
                      These may be fractional.
    :param dim: the dimension of the output.
    :param max_period: controls the minimum frequency of the embeddings.
    :return: an [N x dim] Tensor of positional embeddings.
    """
    half = dim // 2
    freqs = torch.exp(
        -math.log(max_period) * torch.arange(start=0,
                                             end=half, dtype=torch.float32) / half
    ).to(device=gammas.device)
    args = gammas[:, None].float() * freqs[None]
    embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
    if dim % 2:
        embedding = torch.cat(
            [embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
    return embedding


class LayerNormFunction(torch.autograd.Function):

    @staticmethod
    def forward(ctx, x, weight, bias, eps):
        ctx.eps = eps
        N, C, H, W = x.size()
        mu = x.mean(1, keepdim=True)
        var = (x - mu).pow(2).mean(1, keepdim=True)
        y = (x - mu) / (var + eps).sqrt()
        ctx.save_for_backward(y, var, weight)
        y = weight.view(1, C, 1, 1) * y + bias.view(1, C, 1, 1)
        return y

    @staticmethod
    def backward(ctx, grad_output):
        eps = ctx.eps

        N, C, H, W = grad_output.size()
        y, var, weight = ctx.saved_variables
        g = grad_output * weight.view(1, C, 1, 1)
        mean_g = g.mean(dim=1, keepdim=True)

        mean_gy = (g * y).mean(dim=1, keepdim=True)
        gx = 1. / torch.sqrt(var + eps) * (g - y * mean_gy - mean_g)
        return gx, (grad_output * y).sum(dim=3).sum(dim=2).sum(dim=0), grad_output.sum(dim=3).sum(dim=2).sum(
            dim=0), None


class LayerNorm2d(nn.Module):

    def __init__(self, channels, eps=1e-6):
        super(LayerNorm2d, self).__init__()
        self.register_parameter('weight', nn.Parameter(torch.ones(channels)))
        self.register_parameter('bias', nn.Parameter(torch.zeros(channels)))
        self.eps = eps

    def forward(self, x):
        return LayerNormFunction.apply(x, self.weight, self.bias, self.eps)


class SimpleGate(nn.Module):
    def forward(self, x):
        x1, x2 = x.chunk(2, dim=1)
        return x1 * x2


class CondNAFBlock(nn.Module):
    def __init__(self, c, DW_Expand=2, FFN_Expand=2, drop_out_rate=0.):
        super().__init__()
        dw_channel = c * DW_Expand
        self.conv1 = nn.Conv2d(in_channels=c, out_channels=dw_channel,
                               kernel_size=1, padding=0, stride=1, groups=1, bias=True)
        self.conv2 = nn.Conv2d(in_channels=dw_channel, out_channels=dw_channel, kernel_size=3, padding=1, stride=1, groups=dw_channel,
                               bias=True)
        self.conv3 = nn.Conv2d(in_channels=dw_channel // 2, out_channels=c,
                               kernel_size=1, padding=0, stride=1, groups=1, bias=True)

        # Simplified Channel Attention
        # self.sca = nn.Sequential(
        #     nn.AdaptiveAvgPool2d(1),
        #     nn.Conv2d(in_channels=dw_channel // 2, out_channels=dw_channel // 2, kernel_size=1, padding=0, stride=1,
        #               groups=1, bias=True),
        # )
        self.sca_avg = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(in_channels=dw_channel // 4, out_channels=dw_channel // 4, kernel_size=1, padding=0, stride=1,
                      groups=1, bias=True),
        )
        self.sca_max = nn.Sequential(
            nn.AdaptiveMaxPool2d(1),
            nn.Conv2d(in_channels=dw_channel // 4, out_channels=dw_channel // 4, kernel_size=1, padding=0, stride=1,
                      groups=1, bias=True),
        )

        # SimpleGate
        self.sg = SimpleGate()

        ffn_channel = FFN_Expand * c
        self.conv4 = nn.Conv2d(in_channels=c, out_channels=ffn_channel,
                               kernel_size=1, padding=0, stride=1, groups=1, bias=True)
        self.conv5 = nn.Conv2d(in_channels=ffn_channel // 2, out_channels=c,
                               kernel_size=1, padding=0, stride=1, groups=1, bias=True)

        self.norm1 = LayerNorm2d(c)
        self.norm2 = LayerNorm2d(c)

        self.dropout1 = nn.Dropout(
            drop_out_rate) if drop_out_rate > 0. else nn.Identity()
        self.dropout2 = nn.Dropout(
            drop_out_rate) if drop_out_rate > 0. else nn.Identity()

        self.beta = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True)
        self.gamma = nn.Parameter(torch.zeros(
            (1, c, 1, 1)), requires_grad=True)

    def forward(self, inp):
        x = inp

        x = self.norm1(x)

        x = self.conv1(x)
        x = self.conv2(x)
        x = self.sg(x)
        x_avg, x_max = x.chunk(2, dim=1)
        x_avg = self.sca_avg(x_avg)*x_avg
        x_max = self.sca_max(x_max)*x_max
        x = torch.cat([x_avg, x_max], dim=1)
        x = self.conv3(x)

        x = self.dropout1(x)

        y = inp + x * self.beta

        x = self.conv4(self.norm2(y))
        x = self.sg(x)
        x = self.conv5(x)

        x = self.dropout2(x)

        return y + x * self.gamma


class NAFBlock(nn.Module):
    def __init__(self, c, DW_Expand=2, FFN_Expand=2, drop_out_rate=0.):
        super().__init__()
        dw_channel = c * DW_Expand
        self.conv1 = nn.Conv2d(in_channels=c, out_channels=dw_channel,
                               kernel_size=1, padding=0, stride=1, groups=1, bias=True)
        self.conv2 = nn.Conv2d(in_channels=dw_channel, out_channels=dw_channel, kernel_size=3, padding=1, stride=1, groups=dw_channel,
                               bias=True)
        self.conv3 = nn.Conv2d(in_channels=dw_channel // 2, out_channels=c,
                               kernel_size=1, padding=0, stride=1, groups=1, bias=True)

        # Simplified Channel Attention
        # self.sca = nn.Sequential(
        #     nn.AdaptiveAvgPool2d(1),
        #     nn.Conv2d(in_channels=dw_channel // 2, out_channels=dw_channel // 2, kernel_size=1, padding=0, stride=1,
        #               groups=1, bias=True),
        # )
        self.sca_avg = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(in_channels=dw_channel // 4, out_channels=dw_channel // 4, kernel_size=1, padding=0, stride=1,
                      groups=1, bias=True),
        )
        self.sca_max = nn.Sequential(
            nn.AdaptiveMaxPool2d(1),
            nn.Conv2d(in_channels=dw_channel // 4, out_channels=dw_channel // 4, kernel_size=1, padding=0, stride=1,
                      groups=1, bias=True),
        )

        # SimpleGate
        self.sg = SimpleGate()

        ffn_channel = FFN_Expand * c
        self.conv4 = nn.Conv2d(in_channels=c, out_channels=ffn_channel,
                               kernel_size=1, padding=0, stride=1, groups=1, bias=True)
        self.conv5 = nn.Conv2d(in_channels=ffn_channel // 2, out_channels=c,
                               kernel_size=1, padding=0, stride=1, groups=1, bias=True)

        self.norm1 = LayerNorm2d(c)
        self.norm2 = LayerNorm2d(c)

        self.dropout1 = nn.Dropout(
            drop_out_rate) if drop_out_rate > 0. else nn.Identity()
        self.dropout2 = nn.Dropout(
            drop_out_rate) if drop_out_rate > 0. else nn.Identity()

        self.beta = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True)
        self.gamma = nn.Parameter(torch.zeros(
            (1, c, 1, 1)), requires_grad=True)
        # self.time_emb = nn.Sequential(
        #     nn.SiLU(),
        #     nn.Linear(256, c),
        # )

    def forward(self, inp):
        x = inp

        x = self.norm1(x)

        x = self.conv1(x)
        x = self.conv2(x)
        x = self.sg(x)
        x_avg, x_max = x.chunk(2, dim=1)
        x_avg = self.sca_avg(x_avg)*x_avg
        x_max = self.sca_max(x_max)*x_max
        x = torch.cat([x_avg, x_max], dim=1)
        x = self.conv3(x)

        x = self.dropout1(x)

        y = inp + x * self.beta

        # y = y+self.time_emb(t)[..., None, None]

        x = self.conv4(self.norm2(y))
        x = self.sg(x)
        x = self.conv5(x)

        x = self.dropout2(x)

        return y + x * self.gamma


class UNCRTAINTS(nn.Module):

    def __init__(
        self,
        input_dim=15,
        out_conv=[13],
        width=64,
        middle_blk_num=1,
        enc_blk_nums=[1, 1, 1, 1],
        dec_blk_nums=[1, 1, 1, 1],
        encoder_widths=[128],
        decoder_widths=[128,128,128,128,128],
        out_nonlin_mean=False,
        out_nonlin_var='relu',
        agg_mode="att_group",
        encoder_norm="group",
        decoder_norm="batch",
        n_head=16,
        d_model=256,
        d_k=4,
        pad_value=0,
        padding_mode="reflect",
        positional_encoding=True,
        covmode='diag',
        scale_by=1,
        separate_out=False,
        use_v=False,
        block_type='mbconv',
        is_mono=False
    ):
        super().__init__()

        self.intro = nn.Conv2d(in_channels=input_dim, out_channels=width, kernel_size=3, padding=1, stride=1, groups=1,
                               bias=True)
        # self.cond_intro = nn.Conv2d(in_channels=img_channel+2, out_channels=width, kernel_size=3, padding=1, stride=1, groups=1,
        #                             bias=True)
        self.ending = nn.Conv2d(in_channels=width, out_channels=out_conv[0], kernel_size=3, padding=1, stride=1, groups=1,
                                bias=True)
        # self.inp_ending = nn.Conv2d(in_channels=img_channel, out_channels=3, kernel_size=3, padding=1, stride=1, groups=1,
        #                             bias=True)

        self.encoders = nn.ModuleList()
        self.cond_encoders = nn.ModuleList()

        self.decoders = nn.ModuleList()

        self.middle_blks = nn.ModuleList()

        self.ups = nn.ModuleList()

        self.downs = nn.ModuleList()
        self.cond_downs = nn.ModuleList()

        chan = width
        for num in enc_blk_nums:
            self.encoders.append(
                nn.Sequential(
                    *[NAFBlock(chan) for _ in range(num)]
                )
            )
            self.cond_encoders.append(
                nn.Sequential(
                    *[CondNAFBlock(chan) for _ in range(num)]
                )
            )
            self.downs.append(
                nn.Conv2d(chan, 2*chan, 2, 2)
            )
            # self.cond_downs.append(
            #     nn.Conv2d(chan, 2*chan, 2, 2)
            # )
            chan = chan * 2

        self.middle_blks = \
            nn.Sequential(
                *[NAFBlock(chan) for _ in range(middle_blk_num)]
            )

        for num in dec_blk_nums:
            self.ups.append(
                nn.Sequential(
                    nn.Conv2d(chan, chan * 2, 1, bias=False),
                    nn.PixelShuffle(2)
                )
            )
            chan = chan // 2
            self.decoders.append(
                nn.Sequential(
                    *[NAFBlock(chan) for _ in range(num)]
                )
            )

        self.padder_size = 2 ** len(self.encoders)
        # self.map = nn.Sequential(
        #     nn.Linear(64, 256),
        #     nn.SiLU(),
        #     nn.Linear(256, 256),
        # )

    def forward(self, inp, batch_positions):
        # inp = self.check_image_size(inp)
        inp = inp.squeeze(1)
        x = self.intro(inp)

        encs = []

        for encoder, down in zip(self.encoders, self.downs):
            x = encoder(x)
            # b, c, h, w = cond.shape
            # tmp_cond = cond.view(b//3, 3, c, h, w).sum(dim=1)
            # tmp_cond = cond
            # x = x + tmp_cond
            encs.append(x)
            x = down(x)
            # cond = cond_down(cond)

        x = self.middle_blks(x)

        for decoder, up, enc_skip in zip(self.decoders, self.ups, encs[::-1]):
            x = up(x)
            x = x + enc_skip
            x = decoder(x)

        x = self.ending(x)
        # x = x + self.inp_ending(inp)
        # print(x.shape)
        return x.unsqueeze(1)

    def check_image_size(self, x):
        _, _, h, w = x.size()
        mod_pad_h = (self.padder_size - h %
                     self.padder_size) % self.padder_size
        mod_pad_w = (self.padder_size - w %
                     self.padder_size) % self.padder_size
        x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h))
        return x


if __name__ == '__main__':
    # unit test for ground resolution
    inp = torch.randn(1, 15, 256, 256)
    net = UNCRTAINTS(
        input_dim=15,
        out_conv=[13],
        width=64,
        middle_blk_num=1,
        enc_blk_nums=[1, 1, 1, 1],
        dec_blk_nums=[1, 1, 1, 1],
    )
    out = net(inp)
    assert out.shape == (1, 13, 256, 256)
        
    # from thop import profile
    # out_shape = (1, 12, 384, 384)
    # input_shape = (1, 13, 384, 384)
    # model = DiffCR(
    #         img_channel=13,
    #         width=32,
    #         middle_blk_num=1,
    #         enc_blk_nums=[1, 1, 1, 1],
    #         dec_blk_nums=[1, 1, 1, 1],
    #     )
    # # 使用 thop 的 profile 函数来获取 FLOPs 和参数量
    # flops, params = profile(model, inputs=(torch.randn(out_shape), torch.ones(1,), torch.randn(input_shape)))
    # print(f"FLOPs: {flops / 1e9} G")
    # print(f"Parameters: {params / 1e6} M")
    


# if __name__=='__main__':
#     inp = torch.rand(1, 15, 256, 256)
#     net = UNCRTAINTS(
#         input_dim=15,
#         out_conv=[13],
#     )
#     out = net(inp)
#     assert out.shape==(1, 13, 256, 256)