File size: 4,866 Bytes
3c8ff2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
"""
Taken from https://github.com/roserustowicz/crop-type-mapping/
Implementation by the authors of the paper :
"Semantic Segmentation of crop type in Africa: A novel Dataset and analysis of deep learning methods"
R.M. Rustowicz et al.

Slightly modified to support image sequences of varying length in the same batch.
"""

import torch
import torch.nn as nn


def conv_block(in_dim, middle_dim, out_dim):
    model = nn.Sequential(
        nn.Conv3d(in_dim, middle_dim, kernel_size=3, stride=1, padding=1),
        nn.BatchNorm3d(middle_dim),
        nn.LeakyReLU(inplace=True),
        nn.Conv3d(middle_dim, out_dim, kernel_size=3, stride=1, padding=1),
        nn.BatchNorm3d(out_dim),
        nn.LeakyReLU(inplace=True),
    )
    return model


def center_in(in_dim, out_dim):
    model = nn.Sequential(
        nn.Conv3d(in_dim, out_dim, kernel_size=3, stride=1, padding=1),
        nn.BatchNorm3d(out_dim),
        nn.LeakyReLU(inplace=True))
    return model


def center_out(in_dim, out_dim):
    model = nn.Sequential(
        nn.Conv3d(in_dim, in_dim, kernel_size=3, stride=1, padding=1),
        nn.BatchNorm3d(in_dim),
        nn.LeakyReLU(inplace=True),
        nn.ConvTranspose3d(in_dim, out_dim, kernel_size=3, stride=2, padding=1, output_padding=1))
    return model


def up_conv_block(in_dim, out_dim):
    model = nn.Sequential(
        nn.ConvTranspose3d(in_dim, out_dim, kernel_size=3, stride=2, padding=1, output_padding=1),
        nn.BatchNorm3d(out_dim),
        nn.LeakyReLU(inplace=True),
    )
    return model


class UNet3D(nn.Module):
    def __init__(self, in_channel, n_classes, feats=8, pad_value=None, zero_pad=True, out_nonlin=False):
        super(UNet3D, self).__init__()
        self.in_channel = in_channel
        self.n_classes = n_classes
        self.pad_value = pad_value
        self.zero_pad = zero_pad

        self.en3 = conv_block(in_channel, feats * 4, feats * 4)
        self.pool_3 = nn.MaxPool3d(kernel_size=2, stride=2, padding=0)
        self.en4 = conv_block(feats * 4, feats * 8, feats * 8)
        self.pool_4 = nn.MaxPool3d(kernel_size=2, stride=2, padding=0)
        self.center_in = center_in(feats * 8, feats * 16)
        self.center_out = center_out(feats * 16, feats * 8)
        self.dc4 = conv_block(feats * 16, feats * 8, feats * 8)
        self.trans3 = up_conv_block(feats * 8, feats * 4)
        self.dc3 = conv_block(feats * 8, feats * 4, feats * 2)
        self.final = nn.Conv3d(feats * 2, n_classes, kernel_size=3, stride=1, padding=1)
        if out_nonlin: 
            self.out_sigm = nn.Sigmoid() # this is for predicting mean values in [0, 1]
            self.out_relu = nn.ReLU()    # this is for predicting var values > 0
        # self.fn = nn.Linear(timesteps, 1)
        # self.logsoftmax = nn.LogSoftmax(dim=1)
        # self.dropout = nn.Dropout(p=dropout, inplace=True)

    def forward(self, x, batch_positions=None):
        out = x.permute(0, 2, 1, 3, 4) # x was BxTxCxHxW, now BxCxTxHxW
        if self.pad_value is not None:
            pad_mask = (out == self.pad_value).all(dim=-1).all(dim=-1).all(dim=1)  # BxT pad mask
            if self.zero_pad:
                out[out == self.pad_value] = 0
        en3 = self.en3(out)
        pool_3 = self.pool_3(en3)
        en4 = self.en4(pool_3)
        pool_4 = self.pool_4(en4)
        center_in = self.center_in(pool_4)
        center_out = self.center_out(center_in)
        concat4 = torch.cat([center_out, en4[:, :, :center_out.shape[2], :, :]], dim=1)
        dc4 = self.dc4(concat4)
        trans3 = self.trans3(dc4)
        concat3 = torch.cat([trans3, en3[:, :, :trans3.shape[2], :, :]], dim=1)
        dc3 = self.dc3(concat3)
        final = self.final(dc3)
        final = final.permute(0, 1, 3, 4, 2)  # BxCxHxWxT

        # shape_num = final.shape[0:4]
        # final = final.reshape(-1,final.shape[4])
        if self.pad_value is not None:
            if pad_mask.any():
                # masked mean
                pad_mask = pad_mask[:, :final.shape[-1]] #match new temporal length (due to pooling)
                pad_mask = ~pad_mask # 0 on padded values
                out = (final.permute(1, 2, 3, 0, 4) * pad_mask[None, None, None, :, :]).sum(dim=-1) / pad_mask.sum(
                    dim=-1)[None, None, None, :]
                out = out.permute(3, 0, 1, 2)
            else:
                out = final.mean(dim=-1)
        else:
            out = final.mean(dim=-1)
        if hasattr(self, 'out_sigm'): 
            out_mean = self.out_sigm(out[:,:,:13,...]) # mean predictions
            out_std  = self.out_relu(out[:,:,13:,...]) # var predictions
            # stack mean and var predictions
            out      = torch.cat((out_mean, out_std), dim=2)
        # final = self.dropout(final)
        # final = self.fn(final)
        # final = final.reshape(shape_num)

        return out