File size: 34,936 Bytes
3c8ff2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 |
"""
U-TAE Implementation
Author: Vivien Sainte Fare Garnot (github/VSainteuf)
License: MIT
"""
import torch
import torch.nn as nn
from src.backbones.convlstm import ConvLSTM, BConvLSTM
from src.backbones.ltae import LTAE2d, LTAE2dtiny
# function to normalize gradient magnitudes,
# evoke via e.g. scale_gradients(out) at every forward pass
def scale_gradients(params):
def hook_norm(grad):
# get norm of parameter p's gradients
#grad_norm = p.grad.detach().data.norm(2)
# get the gradient's L2 norm
grad_norm = grad.detach().data.norm(2)
# return normalized gradient
return grad/(grad_norm+1e-9)
# see https://pytorch.org/docs/stable/generated/torch.Tensor.register_hook.html
params.register_hook(hook_norm)
class UNet(nn.Module):
def __init__(
self,
input_dim,
encoder_widths=[64, 64, 64, 128],
decoder_widths=[32, 32, 64, 128],
out_conv=[13],
out_nonlin_mean=False,
out_nonlin_var='relu',
str_conv_k=4,
str_conv_s=2,
str_conv_p=1,
encoder_norm="group",
norm_skip="batch",
norm_up="batch",
decoder_norm="batch",
encoder=False,
return_maps=False,
pad_value=0,
padding_mode="reflect",
):
"""
U-Net architecture for spatial pre-training of UTAE on mono-temporal data, excluding LTAE temporal encoder.
Args:
input_dim (int): Number of channels in the input images.
encoder_widths (List[int]): List giving the number of channels of the successive encoder_widths of the convolutional encoder.
This argument also defines the number of encoder_widths (i.e. the number of downsampling steps +1)
in the architecture.
The number of channels are given from top to bottom, i.e. from the highest to the lowest resolution.
decoder_widths (List[int], optional): Same as encoder_widths but for the decoder. The order in which the number of
channels should be given is also from top to bottom. If this argument is not specified the decoder
will have the same configuration as the encoder.
out_conv (List[int]): Number of channels of the successive convolutions for the
str_conv_k (int): Kernel size of the strided up and down convolutions.
str_conv_s (int): Stride of the strided up and down convolutions.
str_conv_p (int): Padding of the strided up and down convolutions.
agg_mode (str): Aggregation mode for the skip connections. Can either be:
- att_group (default) : Attention weighted temporal average, using the same
channel grouping strategy as in the LTAE. The attention masks are bilinearly
resampled to the resolution of the skipped feature maps.
- att_mean : Attention weighted temporal average,
using the average attention scores across heads for each date.
- mean : Temporal average excluding padded dates.
encoder_norm (str): Type of normalisation layer to use in the encoding branch. Can either be:
- group : GroupNorm (default)
- batch : BatchNorm
- instance : InstanceNorm
- none: apply no normalization
norm_skip (str): similar to encoder_norm, just controlling the normalization after convolving skipped maps
norm_up (str): similar to encoder_norm, just controlling the normalization after transposed convolution
decoder_norm (str): similar to encoder_norm
n_head (int): Number of heads in LTAE.
d_model (int): Parameter of LTAE
d_k (int): Key-Query space dimension
encoder (bool): If true, the feature maps instead of the class scores are returned (default False)
return_maps (bool): If true, the feature maps instead of the class scores are returned (default False)
pad_value (float): Value used by the dataloader for temporal padding.
padding_mode (str): Spatial padding strategy for convolutional layers (passed to nn.Conv2d).
positional_encoding (bool): If False, no positional encoding is used (default True).
"""
super(UNet, self).__init__()
self.n_stages = len(encoder_widths)
self.return_maps = return_maps
self.encoder_widths = encoder_widths
self.decoder_widths = decoder_widths
self.enc_dim = (
decoder_widths[0] if decoder_widths is not None else encoder_widths[0]
)
self.stack_dim = (
sum(decoder_widths) if decoder_widths is not None else sum(encoder_widths)
)
self.pad_value = pad_value
self.encoder = encoder
if encoder:
self.return_maps = True
if decoder_widths is not None:
assert len(encoder_widths) == len(decoder_widths)
assert encoder_widths[-1] == decoder_widths[-1]
else:
decoder_widths = encoder_widths
# ENCODER
self.in_conv = ConvBlock(
nkernels=[input_dim] + [encoder_widths[0]],
k=1, s=1, p=0,
pad_value=pad_value,
norm=encoder_norm,
padding_mode=padding_mode,
)
self.down_blocks = nn.ModuleList(
DownConvBlock(
d_in=encoder_widths[i],
d_out=encoder_widths[i + 1],
k=str_conv_k,
s=str_conv_s,
p=str_conv_p,
pad_value=pad_value,
norm=encoder_norm,
padding_mode=padding_mode,
)
for i in range(self.n_stages - 1)
)
# DECODER
self.up_blocks = nn.ModuleList(
UpConvBlock(
d_in=decoder_widths[i],
d_out=decoder_widths[i - 1],
d_skip=encoder_widths[i - 1],
k=str_conv_k,
s=str_conv_s,
p=str_conv_p,
norm_skip=norm_skip, #'batch'
norm_up=norm_up, # 'batch'
norm=decoder_norm, #"batch",
padding_mode=padding_mode,
)
for i in range(self.n_stages - 1, 0, -1)
)
# note: not including normalization layer and ReLU nonlinearity into the final ConvBlock,
# if inserting >1 layers into out_conv then consider treating normalizations separately
self.out_dims = out_conv[-1]
self.out_conv = ConvBlock(nkernels=[decoder_widths[0]] + out_conv, k=1, s=1, p=0, padding_mode=padding_mode, norm='none', last_relu=False)
if out_nonlin_mean:
self.out_mean = nn.Sigmoid() # this is for predicting mean values in [0, 1]
else:
self.out_mean = nn.Identity() # just keep the mean estimates, without applying a nonlinearity
if out_nonlin_var=='relu':
self.out_var = nn.ReLU() # this is for predicting var values > 0
elif out_nonlin_var=='softplus':
self.out_var = nn.Softplus(beta=1, threshold=20) # a smooth approximation to the ReLU function
elif out_nonlin_var=='elu':
self.out_var = lambda vars: nn.ELU()(vars) + 1 + 1e-8
else: # just keep the variance estimates,
self.out_var = nn.Identity() # just keep the variance estimates, without applying a nonlinearity
def forward(self, input, batch_positions=None, return_att=False):
# SPATIAL ENCODER
# collect feature maps in list 'feature_maps'
out = self.in_conv.smart_forward(input)
feature_maps = [out]
for i in range(self.n_stages - 1):
out = self.down_blocks[i].smart_forward(feature_maps[-1])
feature_maps.append(out)
# SPATIAL DECODER
if self.return_maps:
maps = [out]
out = out[:,0,...] # note: we index to reduce the temporal dummy dimension of size 1
for i in range(self.n_stages - 1):
# skip-connect features between paired encoder/decoder blocks
skip = feature_maps[-(i + 2)]
# upconv the features, concatenating current 'out' and paired 'skip'
out = self.up_blocks[i](out, skip[:,0,...]) # note: we index to reduce the temporal dummy dimension of size 1
if self.return_maps:
maps.append(out)
if self.encoder:
return out, maps
else:
out = self.out_conv(out)
# append a singelton temporal dimension such that outputs are [B x T=1 x C x H x W]
out = out.unsqueeze(1)
# optionally apply an output nonlinearity
out_mean = self.out_mean(out[:,:,:13,...]) # mean predictions
out_std = self.out_var(out[:,:,13:,...]) # var predictions > 0
out = torch.cat((out_mean, out_std), dim=2) # stack mean and var predictions
if return_att:
return out, None
if self.return_maps:
return out, maps
else:
return out
class UTAE(nn.Module):
def __init__(
self,
input_dim,
encoder_widths=[64, 64, 64, 128],
decoder_widths=[32, 32, 64, 128],
out_conv=[13],
out_nonlin_mean=False,
out_nonlin_var='relu',
str_conv_k=4,
str_conv_s=2,
str_conv_p=1,
agg_mode="att_group",
encoder_norm="group",
norm_skip='batch',
norm_up="batch",
decoder_norm="batch",
n_head=16,
d_model=256,
d_k=4,
encoder=False,
return_maps=False,
pad_value=0,
padding_mode="reflect",
positional_encoding=True,
scale_by=1
):
"""
U-TAE architecture for spatio-temporal encoding of satellite image time series.
Args:
input_dim (int): Number of channels in the input images.
encoder_widths (List[int]): List giving the number of channels of the successive encoder_widths of the convolutional encoder.
This argument also defines the number of encoder_widths (i.e. the number of downsampling steps +1)
in the architecture.
The number of channels are given from top to bottom, i.e. from the highest to the lowest resolution.
decoder_widths (List[int], optional): Same as encoder_widths but for the decoder. The order in which the number of
channels should be given is also from top to bottom. If this argument is not specified the decoder
will have the same configuration as the encoder.
out_conv (List[int]): Number of channels of the successive convolutions for the
str_conv_k (int): Kernel size of the strided up and down convolutions.
str_conv_s (int): Stride of the strided up and down convolutions.
str_conv_p (int): Padding of the strided up and down convolutions.
agg_mode (str): Aggregation mode for the skip connections. Can either be:
- att_group (default) : Attention weighted temporal average, using the same
channel grouping strategy as in the LTAE. The attention masks are bilinearly
resampled to the resolution of the skipped feature maps.
- att_mean : Attention weighted temporal average,
using the average attention scores across heads for each date.
- mean : Temporal average excluding padded dates.
encoder_norm (str): Type of normalisation layer to use in the encoding branch. Can either be:
- group : GroupNorm (default)
- batch : BatchNorm
- instance : InstanceNorm
- none: apply no normalization
norm_skip (str): similar to encoder_norm, just controlling the normalization after convolving skipped maps
norm_up (str): similar to encoder_norm, just controlling the normalization after transposed convolution
decoder_norm (str): similar to encoder_norm
n_head (int): Number of heads in LTAE.
d_model (int): Parameter of LTAE
d_k (int): Key-Query space dimension
encoder (bool): If true, the feature maps instead of the class scores are returned (default False)
return_maps (bool): If true, the feature maps instead of the class scores are returned (default False)
pad_value (float): Value used by the dataloader for temporal padding.
padding_mode (str): Spatial padding strategy for convolutional layers (passed to nn.Conv2d).
positional_encoding (bool): If False, no positional encoding is used (default True).
"""
super(UTAE, self).__init__()
self.n_stages = len(encoder_widths)
self.return_maps = return_maps
self.encoder_widths = encoder_widths
self.decoder_widths = decoder_widths
self.enc_dim = (
decoder_widths[0] if decoder_widths is not None else encoder_widths[0]
)
self.stack_dim = (
sum(decoder_widths) if decoder_widths is not None else sum(encoder_widths)
)
self.pad_value = pad_value
self.encoder = encoder
self.scale_by = scale_by
if encoder:
self.return_maps = True
if decoder_widths is not None:
assert len(encoder_widths) == len(decoder_widths)
assert encoder_widths[-1] == decoder_widths[-1]
else:
decoder_widths = encoder_widths
# ENCODER
self.in_conv = ConvBlock(
nkernels=[input_dim] + [encoder_widths[0]],
k=1, s=1, p=0,
pad_value=pad_value,
norm=encoder_norm,
padding_mode=padding_mode,
)
self.down_blocks = nn.ModuleList(
DownConvBlock(
d_in=encoder_widths[i],
d_out=encoder_widths[i + 1],
k=str_conv_k,
s=str_conv_s,
p=str_conv_p,
pad_value=pad_value,
norm=encoder_norm,
padding_mode=padding_mode,
)
for i in range(self.n_stages - 1)
)
# DECODER
self.up_blocks = nn.ModuleList(
UpConvBlock(
d_in=decoder_widths[i],
d_out=decoder_widths[i - 1],
d_skip=encoder_widths[i - 1],
k=str_conv_k,
s=str_conv_s,
p=str_conv_p,
norm_skip=norm_skip, # 'batch'
norm_up=norm_up, # 'batch'
norm=decoder_norm, #"batch",
padding_mode=padding_mode,
)
for i in range(self.n_stages - 1, 0, -1)
)
# LTAE
self.temporal_encoder = LTAE2d(
in_channels=encoder_widths[-1],
d_model=d_model,
n_head=n_head,
mlp=[d_model, encoder_widths[-1]],
return_att=True,
d_k=d_k,
positional_encoding=positional_encoding,
)
self.temporal_aggregator = Temporal_Aggregator(mode=agg_mode)
# note: not including normalization layer and ReLU nonlinearity into the final ConvBlock
# if inserting >1 layers into out_conv then consider treating normalizations separately
self.out_dims = out_conv[-1]
self.out_conv = ConvBlock(nkernels=[decoder_widths[0]] + out_conv, k=1, s=1, p=0, padding_mode=padding_mode, norm='none', last_relu=False)
if out_nonlin_mean:
self.out_mean = lambda vars: self.scale_by * nn.Sigmoid()(vars) # this is for predicting mean values in [0, 1]
else:
self.out_mean = lambda vars: nn.Identity()(vars) # just keep the mean estimates, without applying a nonlinearity
if out_nonlin_var=='relu':
self.out_var = nn.ReLU() # this is for predicting var values > 0
elif out_nonlin_var=='softplus':
self.out_var = nn.Softplus(beta=1, threshold=20) # a smooth approximation to the ReLU function
elif out_nonlin_var=='elu':
self.out_var = lambda vars: nn.ELU()(vars) + 1 + 1e-8
else: # just keep the variance estimates,
self.out_var = nn.Identity() # just keep the variance estimates, without applying a nonlinearity
def forward(self, input, batch_positions=None, return_att=False):
pad_mask = (
(input == self.pad_value).all(dim=-1).all(dim=-1).all(dim=-1)
) # BxT pad mask
# SPATIAL ENCODER
# collect feature maps in list 'feature_maps'
out = self.in_conv.smart_forward(input)
feature_maps = [out]
for i in range(self.n_stages - 1):
out = self.down_blocks[i].smart_forward(feature_maps[-1])
feature_maps.append(out)
# TEMPORAL ENCODER
# feature_maps[-1].shape is torch.Size([B, T, 128, 32, 32])
# -> every attention pixel has an 8x8 receptive field
# att.shape is torch.Size([h, B, T, 32, 32])
# out.shape is torch.Size([B, 128, 32, 32]), in self-attention class it's Size([B*32*32*h=32768, 1, 16]
out, att = self.temporal_encoder(
feature_maps[-1], batch_positions=batch_positions, pad_mask=pad_mask
)
# SPATIAL DECODER
if self.return_maps:
maps = [out]
for i in range(self.n_stages - 1):
skip = self.temporal_aggregator(
feature_maps[-(i + 2)], pad_mask=pad_mask, attn_mask=att
)
out = self.up_blocks[i](out, skip)
if self.return_maps:
maps.append(out)
if self.encoder:
return out, maps
else:
out = self.out_conv(out)
# append a singelton temporal dimension such that outputs are [B x T=1 x C x H x W]
out = out.unsqueeze(1)
# optionally apply an output nonlinearity
out_mean = self.out_mean(out[:,:,:13,...]) # mean predictions
out_std = self.out_var(out[:,:,13:,...]) # var predictions > 0
out = torch.cat((out_mean, out_std), dim=2) # stack mean and var predictions
if return_att:
return out, att
if self.return_maps:
return out, maps
else:
return out
class TemporallySharedBlock(nn.Module):
"""
Helper module for convolutional encoding blocks that are shared across a sequence.
This module adds the self.smart_forward() method the the block.
smart_forward will combine the batch and temporal dimension of an input tensor
if it is 5-D and apply the shared convolutions to all the (batch x temp) positions.
"""
def __init__(self, pad_value=None):
super(TemporallySharedBlock, self).__init__()
self.out_shape = None
self.pad_value = pad_value
def smart_forward(self, input):
if len(input.shape) == 4:
return self.forward(input)
else:
b, t, c, h, w = input.shape
if self.pad_value is not None:
dummy = torch.zeros(input.shape, device=input.device).float()
self.out_shape = self.forward(dummy.view(b * t, c, h, w)).shape
out = input.view(b * t, c, h, w)
if self.pad_value is not None:
pad_mask = (out == self.pad_value).all(dim=-1).all(dim=-1).all(dim=-1)
if pad_mask.any():
temp = (
torch.ones(
self.out_shape, device=input.device, requires_grad=False
)
* self.pad_value
)
temp[~pad_mask] = self.forward(out[~pad_mask])
out = temp
else:
out = self.forward(out)
else:
out = self.forward(out)
_, c, h, w = out.shape
out = out.view(b, t, c, h, w)
return out
class ConvLayer(nn.Module):
def __init__(
self,
nkernels,
norm="batch",
k=3, s=1, p=1,
n_groups=4,
last_relu=True,
padding_mode="reflect",
):
super(ConvLayer, self).__init__()
layers = []
if norm == "batch":
nl = nn.BatchNorm2d
elif norm == "instance":
nl = nn.InstanceNorm2d
elif norm == "group":
nl = lambda num_feats: nn.GroupNorm(
num_channels=num_feats,
num_groups=n_groups,
)
else:
nl = None
for i in range(len(nkernels) - 1):
layers.append(
nn.Conv2d(
in_channels=nkernels[i],
out_channels=nkernels[i + 1],
kernel_size=k,
padding=p,
stride=s,
padding_mode=padding_mode,
)
)
if nl is not None:
layers.append(nl(nkernels[i + 1]))
if last_relu: # append a ReLU after the current CONV layer
layers.append(nn.ReLU())
elif i < len(nkernels) - 2: # only append ReLU if not last layer
layers.append(nn.ReLU())
self.conv = nn.Sequential(*layers)
def forward(self, input):
return self.conv(input)
class ConvBlock(TemporallySharedBlock):
def __init__(
self,
nkernels,
pad_value=None,
norm="batch",
last_relu=True,
k=3, s=1, p=1,
padding_mode="reflect",
):
super(ConvBlock, self).__init__(pad_value=pad_value)
self.conv = ConvLayer(
nkernels=nkernels,
norm=norm,
last_relu=last_relu,
k=k, s=s, p=p,
padding_mode=padding_mode,
)
def forward(self, input):
return self.conv(input)
class DownConvBlock(TemporallySharedBlock):
def __init__(
self,
d_in,
d_out,
k, s, p,
pad_value=None,
norm="batch",
padding_mode="reflect",
):
super(DownConvBlock, self).__init__(pad_value=pad_value)
self.down = ConvLayer(
nkernels=[d_in, d_in],
norm=norm,
k=k, s=s, p=p,
padding_mode=padding_mode,
)
self.conv1 = ConvLayer(
nkernels=[d_in, d_out],
norm=norm,
padding_mode=padding_mode,
)
self.conv2 = ConvLayer(
nkernels=[d_out, d_out],
norm=norm,
padding_mode=padding_mode,
last_relu=False # note: removing last ReLU in DownConvBlock because it adds onto residual connection
)
def forward(self, input):
out = self.down(input)
out = self.conv1(out)
out = out + self.conv2(out)
return out
def get_norm_layer(out_channels, num_feats, n_groups=4, layer_type='BatchNorm'):
if layer_type == 'batch':
return nn.BatchNorm2d(out_channels)
elif layer_type == 'instance':
return nn.InstanceNorm2d(out_channels)
elif layer_type == 'group':
return nn.GroupNorm(num_channels=num_feats, num_groups=n_groups)
class UpConvBlock(nn.Module):
def __init__(self, d_in, d_out, k, s, p, norm_skip="batch", norm_up ="batch", norm="batch", n_groups=4, d_skip=None, padding_mode="reflect"):
super(UpConvBlock, self).__init__()
d = d_out if d_skip is None else d_skip
# apply another CONV and norm to the skipped paired map
""""
self.skip_conv = nn.Sequential(
nn.Conv2d(in_channels=d, out_channels=d, kernel_size=1),
nn.BatchNorm2d(d),
nn.ReLU(),
)
"""
if norm_skip in ['group', 'batch', 'instance']:
self.skip_conv = nn.Sequential(
nn.Conv2d(in_channels=d, out_channels=d, kernel_size=1),
get_norm_layer(d, d, n_groups, norm_skip), #nn.BatchNorm2d(d),
nn.ReLU())
else:
self.skip_conv = nn.Sequential(
nn.Conv2d(in_channels=d, out_channels=d, kernel_size=1),
nn.ReLU())
# transposed CONV layer to perform upsampling
"""
self.up = nn.Sequential(
nn.ConvTranspose2d(
in_channels=d_in, out_channels=d_out, kernel_size=k, stride=s, padding=p
),
nn.BatchNorm2d(d_out),
nn.ReLU(),
)
"""
if norm_up in ['group', 'batch', 'instance']:
self.up = nn.Sequential(
nn.ConvTranspose2d(in_channels=d_in, out_channels=d_out, kernel_size=k, stride=s, padding=p),
get_norm_layer(d_out, d_out, n_groups, norm_up), #nn.BatchNorm2d(d_out),
nn.ReLU())
else:
self.up = nn.Sequential(
nn.ConvTranspose2d(in_channels=d_in, out_channels=d_out, kernel_size=k, stride=s, padding=p),
nn.ReLU())
self.conv1 = ConvLayer(
nkernels=[d_out + d, d_out], norm=norm, padding_mode=padding_mode, # removing downsampling relu in UpConvBlock because of MobileNet2
)
self.conv2 = ConvLayer(
nkernels=[d_out, d_out], norm=norm, padding_mode=padding_mode, last_relu=False # removing last relu in UpConvBlock because it adds onto residual connection
)
def forward(self, input, skip):
out = self.up(input) # transposed CONV on previous layer
# apply another CONV and norm to the skipped input --> paired encoder map
out = torch.cat([out, self.skip_conv(skip)], dim=1) # concat '' with paired encoder map
out = self.conv1(out) # CONV again
out = out + self.conv2(out) # conv with residual
return out
class Temporal_Aggregator(nn.Module):
def __init__(self, mode="mean"):
super(Temporal_Aggregator, self).__init__()
self.mode = mode
def forward(self, x, pad_mask=None, attn_mask=None):
if pad_mask is not None and pad_mask.any():
if self.mode == "att_group":
n_heads, b, t, h, w = attn_mask.shape
attn = attn_mask.view(n_heads * b, t, h, w)
if x.shape[-2] > w:
attn = nn.Upsample(
size=x.shape[-2:], mode="bilinear", align_corners=False
)(attn)
else:
attn = nn.AvgPool2d(kernel_size=w // x.shape[-2])(attn)
attn = attn.view(n_heads, b, t, *x.shape[-2:])
attn = attn * (~pad_mask).float()[None, :, :, None, None]
out = torch.stack(x.chunk(n_heads, dim=2)) # hxBxTxC/hxHxW
out = attn[:, :, :, None, :, :] * out
out = out.sum(dim=2) # sum on temporal dim -> hxBxC/hxHxW
out = torch.cat([group for group in out], dim=1) # -> BxCxHxW
return out
elif self.mode == "att_mean":
attn = attn_mask.mean(dim=0) # average over heads -> BxTxHxW
attn = nn.Upsample(
size=x.shape[-2:], mode="bilinear", align_corners=False
)(attn)
attn = attn * (~pad_mask).float()[:, :, None, None]
out = (x * attn[:, :, None, :, :]).sum(dim=1)
return out
elif self.mode == "mean":
out = x * (~pad_mask).float()[:, :, None, None, None]
out = out.sum(dim=1) / (~pad_mask).sum(dim=1)[:, None, None, None]
return out
else:
if self.mode == "att_group":
n_heads, b, t, h, w = attn_mask.shape
attn = attn_mask.view(n_heads * b, t, h, w)
if x.shape[-2] > w:
attn = nn.Upsample(
size=x.shape[-2:], mode="bilinear", align_corners=False
)(attn)
else:
attn = nn.AvgPool2d(kernel_size=w // x.shape[-2])(attn)
attn = attn.view(n_heads, b, t, *x.shape[-2:])
out = torch.stack(x.chunk(n_heads, dim=2)) # hxBxTxC/hxHxW
out = attn[:, :, :, None, :, :] * out
out = out.sum(dim=2) # sum on temporal dim -> hxBxC/hxHxW
out = torch.cat([group for group in out], dim=1) # -> BxCxHxW
return out
elif self.mode == "att_mean":
attn = attn_mask.mean(dim=0) # average over heads -> BxTxHxW
attn = nn.Upsample(
size=x.shape[-2:], mode="bilinear", align_corners=False
)(attn)
out = (x * attn[:, :, None, :, :]).sum(dim=1)
return out
elif self.mode == "mean":
return x.mean(dim=1)
class RecUNet(nn.Module):
"""Recurrent U-Net architecture. Similar to the U-TAE architecture but
the L-TAE is replaced by a recurrent network
and temporal averages are computed for the skip connections."""
def __init__(
self,
input_dim,
encoder_widths=[64, 64, 64, 128],
decoder_widths=[32, 32, 64, 128],
out_conv=[13],
str_conv_k=4,
str_conv_s=2,
str_conv_p=1,
temporal="lstm",
input_size=128,
encoder_norm="group",
hidden_dim=128,
encoder=False,
padding_mode="reflect",
pad_value=0,
):
super(RecUNet, self).__init__()
self.n_stages = len(encoder_widths)
self.temporal = temporal
self.encoder_widths = encoder_widths
self.decoder_widths = decoder_widths
self.enc_dim = (
decoder_widths[0] if decoder_widths is not None else encoder_widths[0]
)
self.stack_dim = (
sum(decoder_widths) if decoder_widths is not None else sum(encoder_widths)
)
self.pad_value = pad_value
self.encoder = encoder
if encoder:
self.return_maps = True
else:
self.return_maps = False
if decoder_widths is not None:
assert len(encoder_widths) == len(decoder_widths)
assert encoder_widths[-1] == decoder_widths[-1]
else:
decoder_widths = encoder_widths
self.in_conv = ConvBlock(
nkernels=[input_dim] + [encoder_widths[0], encoder_widths[0]],
pad_value=pad_value,
norm=encoder_norm,
)
self.down_blocks = nn.ModuleList(
DownConvBlock(
d_in=encoder_widths[i],
d_out=encoder_widths[i + 1],
k=str_conv_k,
s=str_conv_s,
p=str_conv_p,
pad_value=pad_value,
norm=encoder_norm,
padding_mode=padding_mode,
)
for i in range(self.n_stages - 1)
)
self.up_blocks = nn.ModuleList(
UpConvBlock(
d_in=decoder_widths[i],
d_out=decoder_widths[i - 1],
d_skip=encoder_widths[i - 1],
k=str_conv_k,
s=str_conv_s,
p=str_conv_p,
norm=encoder_norm,
padding_mode=padding_mode,
)
for i in range(self.n_stages - 1, 0, -1)
)
self.temporal_aggregator = Temporal_Aggregator(mode="mean")
if temporal == "mean":
self.temporal_encoder = Temporal_Aggregator(mode="mean")
elif temporal == "lstm":
size = int(input_size / str_conv_s ** (self.n_stages - 1))
self.temporal_encoder = ConvLSTM(
input_dim=encoder_widths[-1],
input_size=(size, size),
hidden_dim=hidden_dim,
kernel_size=(3, 3),
)
self.out_convlstm = nn.Conv2d(
in_channels=hidden_dim,
out_channels=encoder_widths[-1],
kernel_size=3,
padding=1,
)
elif temporal == "blstm":
size = int(input_size / str_conv_s ** (self.n_stages - 1))
self.temporal_encoder = BConvLSTM(
input_dim=encoder_widths[-1],
input_size=(size, size),
hidden_dim=hidden_dim,
kernel_size=(3, 3),
)
self.out_convlstm = nn.Conv2d(
in_channels=2 * hidden_dim,
out_channels=encoder_widths[-1],
kernel_size=3,
padding=1,
)
elif temporal == "mono":
self.temporal_encoder = None
self.out_conv = ConvBlock(nkernels=[decoder_widths[0]] + out_conv, k=1, s=1, p=0, padding_mode=padding_mode)
def forward(self, input, batch_positions=None):
pad_mask = (
(input == self.pad_value).all(dim=-1).all(dim=-1).all(dim=-1)
) # BxT pad mask
out = self.in_conv.smart_forward(input)
feature_maps = [out]
# ENCODER
for i in range(self.n_stages - 1):
out = self.down_blocks[i].smart_forward(feature_maps[-1])
feature_maps.append(out)
# Temporal encoder
if self.temporal == "mean":
out = self.temporal_encoder(feature_maps[-1], pad_mask=pad_mask)
elif self.temporal == "lstm":
_, out = self.temporal_encoder(feature_maps[-1], pad_mask=pad_mask)
out = out[0][1] # take last cell state as embedding
out = self.out_convlstm(out)
elif self.temporal == "blstm":
out = self.temporal_encoder(feature_maps[-1], pad_mask=pad_mask)
out = self.out_convlstm(out)
elif self.temporal == "mono":
out = feature_maps[-1]
if self.return_maps:
maps = [out]
for i in range(self.n_stages - 1):
if self.temporal != "mono":
skip = self.temporal_aggregator(
feature_maps[-(i + 2)], pad_mask=pad_mask
)
else:
skip = feature_maps[-(i + 2)]
out = self.up_blocks[i](out, skip)
if self.return_maps:
maps.append(out)
if self.encoder:
return out, maps
else:
out = self.out_conv(out)
if self.return_maps:
return out, maps
else:
return out |