File size: 15,033 Bytes
3c8ff2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
import math
import torch
Tensor = torch.Tensor
import torch.nn as nn
import torch.nn.modules.loss
from torch.nn.modules.loss import _Loss
from torch.overrides import has_torch_function_variadic, handle_torch_function
from torch import vmap
S2_BANDS = 13
def get_loss(config):
if config.loss == "GNLL":
criterion1 = GaussianNLLLoss(reduction='mean', eps=1e-8, full=True)
criterion = lambda pred, targ, var: criterion1(pred, targ, var)
elif config.loss == "MGNLL":
criterion1 = MultiGaussianNLLLoss(reduction='mean', eps=1e-8, full=True, mode=config.covmode, chunk=config.chunk_size)
criterion = lambda pred, targ, var: criterion1(pred, targ, var)
elif config.loss=="l1":
criterion1 = nn.L1Loss()
criterion = lambda pred, targ: criterion1(pred, targ)
elif config.loss=="l2":
criterion1 = nn.MSELoss()
criterion = lambda pred, targ: criterion1(pred, targ)
else: raise NotImplementedError
# wrap losses
loss_wrap = lambda *args: args
loss = loss_wrap(criterion)
return loss if not isinstance(loss, tuple) else loss[0]
def calc_loss(criterion, config, out, y, var=None):
if config.loss in ['GNLL']:
loss, variance = criterion(out, y, var)
elif config.loss in ['MGNLL']:
loss, variance = criterion(out, y, var)
else:
loss, variance = criterion(out, y), None
return loss, variance
def gaussian_nll_loss(
input: Tensor,
target: Tensor,
var: Tensor,
full: bool = False,
eps: float = 1e-8,
reduction: str = "mean",
) -> Tensor:
r"""Gaussian negative log likelihood loss.
based on :class:`~torch.nn.GaussianNLLLoss` for details.
Args:
input: expectation of the Gaussian distribution.
target: sample from the Gaussian distribution.
var: tensor of positive variance(s), one for each of the expectations
in the input (heteroscedastic), or a single one (homoscedastic).
full (bool, optional): include the constant term in the loss calculation. Default: ``False``.
eps (float, optional): value added to var, for stability. Default: 1e-6.
reduction (string, optional): specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the output is the average of all batch member losses,
``'sum'``: the output is the sum of all batch member losses.
Default: ``'mean'``.
"""
if has_torch_function_variadic(input, target, var):
return handle_torch_function(
gaussian_nll_loss,
(input, target, var),
input,
target,
var,
full=full,
eps=eps,
reduction=reduction,
)
# Check var size
# If var.size == input.size, the case is heteroscedastic and no further checks are needed.
# Otherwise:
if var.size() != input.size():
# If var is one dimension short of input, but the sizes match otherwise, then this is a homoscedastic case.
# e.g. input.size = (10, 2, 3), var.size = (10, 2)
# -> unsqueeze var so that var.shape = (10, 2, 1)
# this is done so that broadcasting can happen in the loss calculation
if input.size()[:-1] == var.size():
var = torch.unsqueeze(var, dim=-1)
# This checks if the sizes match up to the final dimension, and the final dimension of var is of size 1.
# This is also a homoscedastic case.
# e.g. input.size = (10, 2, 3), var.size = (10, 2, 1)
elif input.size()[:-1] == var.size()[:-1] and var.size(-1) == 1: # Heteroscedastic case
pass
# If none of the above pass, then the size of var is incorrect.
else:
raise ValueError("var is of incorrect size")
# Check validity of reduction mode
if reduction != 'none' and reduction != 'mean' and reduction != 'sum':
raise ValueError(reduction + " is not valid")
# Entries of var must be non-negative
if torch.any(var < 0):
raise ValueError("var has negative entry/entries")
# Clamp for stability
var = var.clone()
with torch.no_grad():
var.clamp_(min=eps)
# Calculate the loss
loss = 0.5 * (torch.log(var) + (input - target)**2 / var)
if full:
loss += 0.5 * math.log(2 * math.pi)
if reduction == 'mean':
return loss.mean(), var
elif reduction == 'sum':
return loss.sum(), var
else:
return loss, var
def multi_diag_gaussian_nll(pred, target, var):
# maps var from [B x 1 x C] to [B x 1 x C x C]
pred, target, var = pred.squeeze(dim=1), target.squeeze(dim=1), var.squeeze(dim=1)
k = pred.shape[-1]
prec = torch.diag_embed(1/var, offset=0, dim1=-2, dim2=-1)
# the log-determinant of a diagonal matrix is simply the trace of the log of the diagonal matrix
logdetv = var.log().sum() # this may be more numerically stable a general calculation
err = (pred - target).unsqueeze(dim=1)
# for the Mahalanobis distance xTCx to be defined and >= 0, the precision matrix must be positive definite
xTCx = torch.bmm(torch.bmm(err, prec), err.permute(0, 2, 1)).squeeze().nan_to_num().clamp(min=1e-9) # note: equals torch.bmm(torch.bmm(-err, prec), -err)
# define the NLL loss
loss = -(-k/2 * torch.log(2*torch.tensor(torch.pi)) - 1/2 * logdetv - 1/2 * xTCx)
return loss, torch.diag_embed(var, offset=0, dim1=-2, dim2=-1).cpu()
def multi_gaussian_nll_loss(
input: Tensor,
target: Tensor,
var: Tensor,
full: bool = False,
eps: float = 1e-8,
reduction: str = "mean",
mode: str = "diag",
chunk = None
) -> Tensor:
r"""Multivariate Gaussian negative log likelihood loss.
based on :class:`~torch.nn.GaussianNLLLoss` for details.
Args:
input: expectation of the Gaussian distribution.
target: sample from the Gaussian distribution.
var: tensor of positive variance(s), one for each of the expectations
in the input (heteroscedastic), or a single one (homoscedastic).
full (bool, optional): include the constant term in the loss calculation. Default: ``False``.
eps (float, optional): value added to var, for stability. Default: 1e-6.
reduction (string, optional): specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
``'mean'``: the output is the average of all batch member losses,
``'sum'``: the output is the sum of all batch member losses.
Default: ``'mean'``.
"""
if has_torch_function_variadic(input, target, var):
return handle_torch_function(
multi_gaussian_nll_loss,
(input, target, var),
input,
target,
var,
full=full,
eps=eps,
reduction=reduction,
mode=mode,
chunk=None
)
if mode=='iso':
# duplicate the scalar variance across all spectral dimensions
var = var.expand(-1,-1,S2_BANDS,-1,-1)
# Check validity of reduction mode
if reduction != 'none' and reduction != 'mean' and reduction != 'sum':
raise ValueError(reduction + " is not valid")
# Entries of var must be non-negative
if torch.any(var < 0):
raise ValueError("var has negative entry/entries")
# Clamp for stability
var = var.clone()
with torch.no_grad():
var[:,:,:S2_BANDS].clamp_(min=eps)
if mode in ['iso', 'diag']:
mapdims = (-1,-1,-1)
loss, variance = vmap(vmap(multi_diag_gaussian_nll, in_dims=mapdims, chunk_size=chunk), in_dims=mapdims, chunk_size=chunk)(input, target, var)
variance = variance.moveaxis(1,-1).moveaxis(0,-1).unsqueeze(1)
if reduction == 'mean':
return loss.mean(), variance
elif reduction == 'sum':
return loss.sum(), variance
else:
return loss, variance
class GaussianNLLLoss(_Loss):
r"""Gaussian negative log likelihood loss.
The targets are treated as samples from Gaussian distributions with
expectations and variances predicted by the neural network. For a
``target`` tensor modelled as having Gaussian distribution with a tensor
of expectations ``input`` and a tensor of positive variances ``var`` the loss is:
.. math::
\text{loss} = \frac{1}{2}\left(\log\left(\text{max}\left(\text{var},
\ \text{eps}\right)\right) + \frac{\left(\text{input} - \text{target}\right)^2}
{\text{max}\left(\text{var}, \ \text{eps}\right)}\right) + \text{const.}
where :attr:`eps` is used for stability. By default, the constant term of
the loss function is omitted unless :attr:`full` is ``True``. If ``var`` is not the same
size as ``input`` (due to a homoscedastic assumption), it must either have a final dimension
of 1 or have one fewer dimension (with all other sizes being the same) for correct broadcasting.
Args:
full (bool, optional): include the constant term in the loss
calculation. Default: ``False``.
eps (float, optional): value used to clamp ``var`` (see note below), for
stability. Default: 1e-6.
reduction (string, optional): specifies the reduction to apply to the
output:``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction
will be applied, ``'mean'``: the output is the average of all batch
member losses, ``'sum'``: the output is the sum of all batch member
losses. Default: ``'mean'``.
Shape:
- Input: :math:`(N, *)` or :math:`(*)` where :math:`*` means any number of additional
dimensions
- Target: :math:`(N, *)` or :math:`(*)`, same shape as the input, or same shape as the input
but with one dimension equal to 1 (to allow for broadcasting)
- Var: :math:`(N, *)` or :math:`(*)`, same shape as the input, or same shape as the input but
with one dimension equal to 1, or same shape as the input but with one fewer
dimension (to allow for broadcasting)
- Output: scalar if :attr:`reduction` is ``'mean'`` (default) or
``'sum'``. If :attr:`reduction` is ``'none'``, then :math:`(N, *)`, same
shape as the input
Note:
The clamping of ``var`` is ignored with respect to autograd, and so the
gradients are unaffected by it.
Reference:
Nix, D. A. and Weigend, A. S., "Estimating the mean and variance of the
target probability distribution", Proceedings of 1994 IEEE International
Conference on Neural Networks (ICNN'94), Orlando, FL, USA, 1994, pp. 55-60
vol.1, doi: 10.1109/ICNN.1994.374138.
"""
__constants__ = ['full', 'eps', 'reduction']
full: bool
eps: float
def __init__(self, *, full: bool = False, eps: float = 1e-8, reduction: str = 'mean') -> None:
super(GaussianNLLLoss, self).__init__(None, None, reduction)
self.full = full
self.eps = eps
def forward(self, input: Tensor, target: Tensor, var: Tensor) -> Tensor:
return gaussian_nll_loss(input, target, var, full=self.full, eps=self.eps, reduction=self.reduction)
class MultiGaussianNLLLoss(_Loss):
r"""Multivariate Gaussian negative log likelihood loss.
The targets are treated as samples from Gaussian distributions with
expectations and variances predicted by the neural network. For a
``target`` tensor modelled as having Gaussian distribution with a tensor
of expectations ``input`` and a tensor of positive variances ``var`` the loss is:
.. math::
\text{loss} = \frac{1}{2}\left(\log\left(\text{max}\left(\text{var},
\ \text{eps}\right)\right) + \frac{\left(\text{input} - \text{target}\right)^2}
{\text{max}\left(\text{var}, \ \text{eps}\right)}\right) + \text{const.}
where :attr:`eps` is used for stability. By default, the constant term of
the loss function is omitted unless :attr:`full` is ``True``. If ``var`` is not the same
size as ``input`` (due to a homoscedastic assumption), it must either have a final dimension
of 1 or have one fewer dimension (with all other sizes being the same) for correct broadcasting.
Args:
full (bool, optional): include the constant term in the loss
calculation. Default: ``False``.
eps (float, optional): value used to clamp ``var`` (see note below), for
stability. Default: 1e-6.
reduction (string, optional): specifies the reduction to apply to the
output:``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction
will be applied, ``'mean'``: the output is the average of all batch
member losses, ``'sum'``: the output is the sum of all batch member
losses. Default: ``'mean'``.
Shape:
- Input: :math:`(N, *)` or :math:`(*)` where :math:`*` means any number of additional
dimensions
- Target: :math:`(N, *)` or :math:`(*)`, same shape as the input, or same shape as the input
but with one dimension equal to 1 (to allow for broadcasting)
- Var: :math:`(N, *)` or :math:`(*)`, same shape as the input, or same shape as the input but
with one dimension equal to 1, or same shape as the input but with one fewer
dimension (to allow for broadcasting)
- Latent: :math:`(N, *)` or :math:`(*)`, same shape as the input, or same shape as the input but
with one dimension equal to 1, or same shape as the input but with one fewer
dimension (to allow for broadcasting)
- Output: scalar if :attr:`reduction` is ``'mean'`` (default) or
``'sum'``. If :attr:`reduction` is ``'none'``, then :math:`(N, *)`, same
shape as the input
Note:
The clamping of ``var`` is ignored with respect to autograd, and so the
gradients are unaffected by it.
Reference:
Nix, D. A. and Weigend, A. S., "Estimating the mean and variance of the
target probability distribution", Proceedings of 1994 IEEE International
Conference on Neural Networks (ICNN'94), Orlando, FL, USA, 1994, pp. 55-60
vol.1, doi: 10.1109/ICNN.1994.374138.
"""
__constants__ = ['full', 'eps', 'reduction']
full: bool
eps: float
def __init__(self, *, full: bool = False, eps: float = 1e-8, reduction: str = 'mean', mode: str = 'diag', chunk: None) -> None:
super(MultiGaussianNLLLoss, self).__init__(None, None, reduction)
self.full = full
self.eps = eps
self.mode = mode
self.chunk = chunk
def forward(self, input: Tensor, target: Tensor, var: Tensor) -> Tensor:
return multi_gaussian_nll_loss(input, target, var, full=self.full, eps=self.eps, reduction=self.reduction, mode=self.mode, chunk=self.chunk)
|