XavierJiezou's picture
Upload folder using huggingface_hub
3c8ff2e verified
import argparse
S2_BANDS = 13
def create_parser(mode='train'):
parser = argparse.ArgumentParser()
# model parameters
parser.add_argument(
"--model",
default='uncrtaints', # e.g. 'unet', 'utae', 'uncrtaints',
type=str,
help="Type of architecture to use. Can be one of: (utae/unet3d/fpn/convlstm/convgru/uconvlstm/buconvlstm)",
)
parser.add_argument("--experiment_name", default='my_first_experiment', help="Name of the current experiment",)
# fast switching between default arguments, depending on train versus test mode
if mode=='train':
parser.add_argument("--res_dir", default="./results", help="Path to where the results are stored, e.g. ./results for training or ./inference for testing",)
parser.add_argument("--plot_every", default=-1, type=int, help="Interval (in items) of exporting plots at validation or test time. Set -1 to disable")
parser.add_argument("--export_every", default=-1, type=int, help="Interval (in items) of exporting data at validation or test time. Set -1 to disable")
parser.add_argument("--resume_at", default=0, type=int, help="Epoch to resume training from (may re-weight --lr in the optimizer) or epoch to load checkpoint from at test time")
elif mode=='test':
parser.add_argument("--res_dir", default="./inference", type=str, help="Path to directory where results are written.")
parser.add_argument("--plot_every", default=-1, type=int, help="Interval (in items) of exporting plots at validation or test time. Set -1 to disable")
parser.add_argument("--export_every", default=1, type=int, help="Interval (in items) of exporting data at validation or test time. Set -1 to disable")
parser.add_argument("--resume_at", default=-1, type=int, help="Epoch to load checkpoint from and run testing with (use -1 for best on validation split)")
parser.add_argument("--encoder_widths", default="[128]", type=str, help="e.g. [64,64,64,128] for U-TAE or [128] for UnCRtainTS")
parser.add_argument("--decoder_widths", default="[128,128,128,128,128]", type=str, help="e.g. [64,64,64,128] for U-TAE or [128,128,128,128,128] for UnCRtainTS")
parser.add_argument("--out_conv", default=f"[{S2_BANDS}]", help="output CONV, note: if inserting another layer then consider treating normalizations separately")
parser.add_argument("--mean_nonLinearity", dest="mean_nonLinearity", action="store_false", help="whether to apply a sigmoidal output nonlinearity to the mean prediction")
parser.add_argument("--var_nonLinearity", default="softplus", type=str, help="how to squash the network's variance outputs [relu | softplus | elu ]")
parser.add_argument("--agg_mode", default="att_group", type=str, help="type of temporal aggregation in L-TAE module")
parser.add_argument("--encoder_norm", default="group", type=str, help="e.g. 'group' (when using many channels) or 'instance' (for few channels)")
parser.add_argument("--decoder_norm", default="batch", type=str, help="e.g. 'group' (when using many channels) or 'instance' (for few channels)")
parser.add_argument("--block_type", default="mbconv", type=str, help="type of CONV block to use [residual | mbconv]")
parser.add_argument("--padding_mode", default="reflect", type=str)
parser.add_argument("--pad_value", default=0, type=float)
# attention-specific parameters
parser.add_argument("--n_head", default=16, type=int, help="default value of 16, 4 for debugging")
parser.add_argument("--d_model", default=256, type=int, help="layers in L-TAE, default value of 256")
parser.add_argument("--positional_encoding", dest="positional_encoding", action="store_false", help="whether to use positional encoding or not")
parser.add_argument("--d_k", default=4, type=int)
parser.add_argument("--low_res_size", default=32, type=int, help="resolution to downsample to")
parser.add_argument("--use_v", dest="use_v", action="store_true", help="whether to use values v or not")
# set-up parameters
parser.add_argument("--num_workers", default=0, type=int, help="Number of data loading workers")
parser.add_argument("--rdm_seed", default=1, type=int, help="Random seed")
parser.add_argument("--device",default="cuda",type=str,help="Name of device to use for tensor computations (cuda/cpu)",)
parser.add_argument("--display_step", default=10, type=int, help="Interval in batches between display of training metrics",)
# training parameters
parser.add_argument("--loss", default="MGNLL", type=str, help="Image reconstruction loss to utilize [l1|l2|GNLL|MGNLL].")
parser.add_argument("--resume_from", dest="resume_from", action="store_true", help="resume training acc. to JSON in --experiment_name and *.pth chckp in --trained_checkp")
parser.add_argument("--unfreeze_after", default=0, type=int, help="When to unfreeze ALL weights for training")
parser.add_argument("--epochs", default=20, type=int, help="Number of epochs to train")
parser.add_argument("--batch_size", default=4, type=int, help="Batch size")
parser.add_argument("--chunk_size", type=int, help="Size of vmap batches, this can be adjusted to accommodate for additional memory needs")
parser.add_argument("--lr", default=1e-2, type=float, help="Learning rate, e.g. 0.01")
parser.add_argument("--gamma", default=1.0, type=float, help="Learning rate decay parameter for scheduler")
parser.add_argument("--val_every", default=1, type=int, help="Interval in epochs between two validation steps.")
parser.add_argument("--val_after", default=0, type=int, help="Do validation only after that many epochs.")
# flags specific to SEN12MS-CR and SEN12MS-CR-TS
parser.add_argument("--use_sar", dest="use_sar", action="store_true", help="whether to use SAR or not")
parser.add_argument("--pretrain", dest="pretrain", action="store_true", help="whether to perform pretraining on SEN12MS-CR or training on SEN12MS-CR-TS")
parser.add_argument("--input_t", default=3, type=int, help="number of input time points to sample, unet3d needs at least 4 time points")
parser.add_argument("--ref_date", default="2014-04-03", type=str, help="reference date for Sentinel observations")
parser.add_argument("--sample_type", default="cloudy_cloudfree", type=str, help="type of samples returned [cloudy_cloudfree | generic]")
parser.add_argument("--vary_samples", dest="vary_samples", action="store_false", help="whether to sample different time points across epochs or not")
parser.add_argument("--min_cov", default=0.0, type=float, help="The minimum cloud coverage to accept per input sample at train time. Gets overwritten by --vary_samples")
parser.add_argument("--max_cov", default=1.0, type=float, help="The maximum cloud coverage to accept per input sample at train time. Gets overwritten by --vary_samples")
parser.add_argument("--root1", default='/home/data/SEN12MSCRTS', type=str, help="path to your copy of SEN12MS-CR-TS")
parser.add_argument("--root2", default='/home/data/SEN12MSCRTS', type=str, help="path to your copy of SEN12MS-CR-TS validation & test splits")
parser.add_argument("--root3", default='/home/data/SEN12MSCR', type=str, help="path to your copy of SEN12MS-CR for pretraining")
parser.add_argument("--precomputed", default='/home/code/UnCRtainTS/util/precomputed', type=str, help="path to pre-computed cloud statistics")
parser.add_argument("--region", default="all", type=str, help="region to (sub-)sample ROI from [all|africa|america|asiaEast|asiaWest|europa]")
parser.add_argument("--max_samples_count", default=int(1e9), type=int, help="count of data (sub-)samples to take")
parser.add_argument("--max_samples_frac", default=1.0, type=float, help="fraction of data (sub-)samples to take")
parser.add_argument("--profile", dest="profile", action="store_true", help="whether to profile code or not")
parser.add_argument("--trained_checkp", default="", type=str, help="Path to loading a pre-trained network *.pth file, rather than initializing weights randomly")
# flags specific to uncertainty modeling
parser.add_argument("--covmode", default='diag', type=str, help="covariance matrix type [uni|iso|diag].")
parser.add_argument("--scale_by", default=1.0, type=float, help="rescale data within model, e.g. to [0,10]")
parser.add_argument("--separate_out", dest="separate_out", action="store_true", help="whether to separately process mean and variance predictions or in a shared layer")
# flags specific for testing
parser.add_argument("--weight_folder", type=str, default="./results", help="Path to the main folder containing the pre-trained weights")
parser.add_argument("--use_custom", dest="use_custom", action="store_true", help="whether to test on individually specified patches or not")
parser.add_argument("--load_config", default='', type=str, help="path of conf.json file to load")
return parser