XavierJiezou commited on
Commit
a8928f9
·
verified ·
1 Parent(s): c0b8e49

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +9 -0
  2. experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/checkpoint/1000.state +3 -0
  3. experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/checkpoint/1000_Network.pth +3 -0
  4. experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/checkpoint/1000_Network_ema.pth +3 -0
  5. experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/checkpoint/2000.state +3 -0
  6. experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/checkpoint/2000_Network.pth +3 -0
  7. experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/checkpoint/2000_Network_ema.pth +3 -0
  8. experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/checkpoint/3000.state +3 -0
  9. experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/checkpoint/3000_Network.pth +3 -0
  10. experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/checkpoint/3000_Network_ema.pth +3 -0
  11. experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/conv2former_2xb4_e3000_dpms_s20.json +162 -0
  12. experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/double_encoder_1xb8_e3000_dpms_s20_noinp.json +148 -0
  13. experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/nafnet128_1xb8_e3000_dpms_s20_noinp.json +148 -0
  14. experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/nafnet16_1xb8_e3000_dpms_s20_noinp.json +148 -0
  15. experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/nafnet32_1xb8_e3000_dpms_s20_noinp.json +148 -0
  16. experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/nafnet64_1131_encoder_1xb8_e3000_dpms_s20_noinp.json +148 -0
  17. experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/nafnet64_newca_1xb8_e3000_dpms_s20_noinp.json +148 -0
  18. experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/nafnet64_nosca_silu_noinp_1xb8_e3000_dpms_s20_noinp.json +148 -0
  19. experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/nafnet64_ours_1xb8_e3000_dpms_s20_noinp.json +148 -0
  20. experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/nafnet64_res_1xb8_e3000_dpms_s20_noinp.json +148 -0
  21. experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/nafnet64_reverseca_1xb8_e3000_dpms_s20_noinp.json +148 -0
  22. experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/nafnet64_splitca_1xb8_e3000_dpms_s20_noinp.json +148 -0
  23. experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/nafnet_1xb8_e3000_dpms_s20_noinp.json +148 -0
  24. experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/nafnet_concat_no_condskip_nodrop_noparams_splitca_double_encoder_decoder_middle_fusion.json +148 -0
  25. experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/nafnet_concat_no_condskip_nodrop_noparams_splitca_double_encoder_decoder_noCondFFN_middle_fusion.json +148 -0
  26. experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/nafnet_double_encoder_splitcaCond.json +148 -0
  27. experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/nafnet_double_encoder_splitcaCond_splitcaUnet.json +148 -0
  28. experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/nafnet_double_encoder_splitcaCond_splitcaUnet_cosine.json +148 -0
  29. experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid.json +148 -0
  30. experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_datan1.json +148 -0
  31. experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_datan2.json +148 -0
  32. experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen1.json +148 -0
  33. experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen2.json +148 -0
  34. experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3.json +148 -0
  35. experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/nafnet_double_encoder_splitcaUnet.json +148 -0
  36. experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/nafnet_sum_no_condskip_nodrop_noparams_splitca_double_encoder_decoder_noCondFFN_middle_fusion.json +148 -0
  37. experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/ours_4bs1_multi_x0.json +145 -0
  38. experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/ours_down4_ca_4bs2_multi_x0.json +145 -0
  39. experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/ours_multi_x0.json +182 -0
  40. experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/palette_1xb8_e5000_dpms_s20_no_noise.json +159 -0
  41. experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/palette_1xb8_e5000_dpms_s20_y_t-1.json +159 -0
  42. experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/palette_4bs2_multi_old_x0.json +145 -0
  43. experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/core/base_dataset.py +48 -0
  44. experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/core/base_model.py +171 -0
  45. experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/core/base_network.py +48 -0
  46. experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/core/dpm_solver_pytorch.py +1306 -0
  47. experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/core/dpm_solver_pytorch_no_noise.py +1306 -0
  48. experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/core/logger.py +171 -0
  49. experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/core/praser.py +155 -0
  50. experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/core/util.py +159 -0
.gitattributes CHANGED
@@ -33,3 +33,12 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/checkpoint/1000.state filter=lfs diff=lfs merge=lfs -text
37
+ experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/checkpoint/2000.state filter=lfs diff=lfs merge=lfs -text
38
+ experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/checkpoint/3000.state filter=lfs diff=lfs merge=lfs -text
39
+ experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_old_5000_230624_144530/checkpoint/1000.state filter=lfs diff=lfs merge=lfs -text
40
+ experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_old_5000_230624_144530/checkpoint/1500.state filter=lfs diff=lfs merge=lfs -text
41
+ experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_old_5000_230624_144530/checkpoint/2000.state filter=lfs diff=lfs merge=lfs -text
42
+ experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_old_5000_230624_144530/checkpoint/2500.state filter=lfs diff=lfs merge=lfs -text
43
+ experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_old_5000_230624_144530/checkpoint/3000.state filter=lfs diff=lfs merge=lfs -text
44
+ experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_old_5000_230624_144530/checkpoint/500.state filter=lfs diff=lfs merge=lfs -text
experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/checkpoint/1000.state ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e24c53149ec4fbad1633893313bda64c06ad519ce850726eb63f089f5d030a9
3
+ size 166896761
experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/checkpoint/1000_Network.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0a68d797fe43ead00b2188b640104466e4d6e1e0c9f942ac6ea9b370110a5d2
3
+ size 91912909
experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/checkpoint/1000_Network_ema.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:70bd51950fdd7a55d5cb733d31e6a93e1ad1040288a34b31d0089bf40ff3d8c9
3
+ size 91863129
experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/checkpoint/2000.state ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43d174cacd920918423c18a862bfcf6de4bf92163d3779e8806a9a61972f2993
3
+ size 166896761
experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/checkpoint/2000_Network.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66ceed2b0b7a2dcfc8b0b06f8345fc7651bfcc1b0baeb58c8003659611d5f457
3
+ size 91912909
experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/checkpoint/2000_Network_ema.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f15b6eab418e98ee78525fa620d06bd24d3f03364152dd9a9f700b2e95a9fa2c
3
+ size 91863129
experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/checkpoint/3000.state ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48ef547c9cf998f1a2b6bdfdc6ea2e8ac11b75e0285f3c7163cfee3b919d3462
3
+ size 166896761
experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/checkpoint/3000_Network.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c2e2e7acb42ec24bc3412364e7a8b757701387bee1488544584bb5c74d274c3f
3
+ size 91912909
experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/checkpoint/3000_Network_ema.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3315e3d3a3b881993f2b5e0dae18cf46c3d4b28a7d7794f6e337f5f170a6feb4
3
+ size 91863129
experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/conv2former_2xb4_e3000_dpms_s20.json ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "conv2former_2xb4_e3000_dpms_s20",
3
+ "gpu_ids": [
4
+ // 2,3 for train
5
+ 3 // for test
6
+ ],
7
+ "seed": -1,
8
+ "finetune_norm": false,
9
+ "path": {
10
+ "base_dir": "experiments",
11
+ "code": "code",
12
+ "tb_logger": "tb_logger",
13
+ "results": "results",
14
+ "checkpoint": "checkpoint",
15
+ "resume_state": "experiments/train_conv2former_2xb4_e3000_dpms_s20_230514_091009/checkpoint/3000"
16
+ },
17
+ "datasets": {
18
+ "train": {
19
+ "which_dataset": {
20
+ "name": [
21
+ "data.dataset",
22
+ "Sen2_MTC_New_Multi"
23
+ ],
24
+ "args": {
25
+ "data_root": "../pmaa/data",
26
+ "mode": "train"
27
+ }
28
+ },
29
+ "dataloader": {
30
+ "validation_split": 2,
31
+ "args": {
32
+ "batch_size": 4,
33
+ "num_workers": 4,
34
+ "shuffle": true,
35
+ "pin_memory": true,
36
+ "drop_last": true
37
+ },
38
+ "val_args": {
39
+ "batch_size": 1,
40
+ "num_workers": 4,
41
+ "shuffle": false,
42
+ "pin_memory": true,
43
+ "drop_last": false
44
+ }
45
+ }
46
+ },
47
+ "val": {
48
+ "which_dataset": {
49
+ "name": "Sen2_MTC_New_Multi",
50
+ "args": {
51
+ "data_root": "../pmaa/data",
52
+ "mode": "val"
53
+ }
54
+ }
55
+ },
56
+ "test": {
57
+ "which_dataset": {
58
+ "name": "Sen2_MTC_New_Multi",
59
+ "args": {
60
+ "data_root": "../pmaa/data",
61
+ "mode": "test"
62
+ }
63
+ },
64
+ "dataloader": {
65
+ "args": {
66
+ "batch_size": 1,
67
+ "num_workers": 1,
68
+ "pin_memory": true
69
+ }
70
+ }
71
+ }
72
+ },
73
+ "model": {
74
+ "which_model": {
75
+ "name": [
76
+ "models.model",
77
+ "Palette"
78
+ ],
79
+ "args": {
80
+ "sample_num": 8,
81
+ "task": "decloud",
82
+ "ema_scheduler": {
83
+ "ema_start": 1,
84
+ "ema_iter": 1,
85
+ "ema_decay": 0.9999
86
+ },
87
+ "optimizers": [
88
+ {
89
+ "lr": 5e-05,
90
+ "weight_decay": 0
91
+ }
92
+ ]
93
+ }
94
+ },
95
+ "which_networks": [
96
+ {
97
+ "name": [
98
+ "models.network_x0_dpm_solver",
99
+ "Network"
100
+ ],
101
+ "args": {
102
+ "init_type": "kaiming",
103
+ "module_name": "conv2former",
104
+ "unet": {
105
+ "in_channel": 12, //3*3+3(noise)
106
+ "out_channel": 3,
107
+ "inner_channel": 64,
108
+ "channel_mults": [
109
+ 1,
110
+ 2,
111
+ 4,
112
+ 8
113
+ ],
114
+ "attn_res": [
115
+ // 32,
116
+ 16
117
+ // 8
118
+ ],
119
+ "num_head_channels": 32,
120
+ "res_blocks": 2,
121
+ "dropout": 0.2,
122
+ "image_size": 256 // default 224
123
+ },
124
+ "beta_schedule": {
125
+ "train": {
126
+ "schedule": "linear",
127
+ "n_timestep": 2000,
128
+ "linear_start": 1e-06,
129
+ "linear_end": 0.01
130
+ },
131
+ "test": {
132
+ "schedule": "linear",
133
+ "n_timestep": 1000,
134
+ "linear_start": 0.0001,
135
+ "linear_end": 0.09
136
+ }
137
+ }
138
+ }
139
+ }
140
+ ],
141
+ "which_losses": [
142
+ "mse_loss"
143
+ ],
144
+ "which_metrics": [
145
+ "mae"
146
+ ]
147
+ },
148
+ "train": {
149
+ "n_epoch": 3000,
150
+ "n_iter": 100000000,
151
+ "val_epoch": 10,
152
+ "save_checkpoint_epoch": 100,
153
+ "log_iter": 10000,
154
+ "tensorboard": true
155
+ },
156
+ "debug": {
157
+ "val_epoch": 1,
158
+ "save_checkpoint_epoch": 1,
159
+ "log_iter": 10,
160
+ "debug_split": 50
161
+ }
162
+ }
experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/double_encoder_1xb8_e3000_dpms_s20_noinp.json ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "double_1xb8_e3000_dpms_s20_noinp",
3
+ "gpu_ids": [
4
+ 1
5
+ ],
6
+ "seed": -1,
7
+ "finetune_norm": false,
8
+ "path": {
9
+ "base_dir": "experiments",
10
+ "code": "code",
11
+ "tb_logger": "tb_logger",
12
+ "results": "results",
13
+ "checkpoint": "checkpoint",
14
+ "resume_state": "experiments/train_double_1xb8_e3000_dpms_s20_noinp_230515_045603/checkpoint/3000"
15
+ },
16
+ "datasets": {
17
+ "train": {
18
+ "which_dataset": {
19
+ "name": [
20
+ "data.dataset",
21
+ "Sen2_MTC_New_Multi"
22
+ ],
23
+ "args": {
24
+ "data_root": "../pmaa/data",
25
+ "mode": "train"
26
+ }
27
+ },
28
+ "dataloader": {
29
+ "validation_split": 2,
30
+ "args": {
31
+ "batch_size": 8,
32
+ "num_workers": 8,
33
+ "shuffle": true,
34
+ "pin_memory": true,
35
+ "drop_last": true
36
+ },
37
+ "val_args": {
38
+ "batch_size": 1,
39
+ "num_workers": 4,
40
+ "shuffle": false,
41
+ "pin_memory": true,
42
+ "drop_last": false
43
+ }
44
+ }
45
+ },
46
+ "val": {
47
+ "which_dataset": {
48
+ "name": "Sen2_MTC_New_Multi",
49
+ "args": {
50
+ "data_root": "../pmaa/data",
51
+ "mode": "val"
52
+ }
53
+ }
54
+ },
55
+ "test": {
56
+ "which_dataset": {
57
+ "name": "Sen2_MTC_New_Multi",
58
+ "args": {
59
+ "data_root": "../pmaa/data",
60
+ "mode": "test"
61
+ }
62
+ },
63
+ "dataloader": {
64
+ "args": {
65
+ "batch_size": 1,
66
+ "num_workers": 1,
67
+ "pin_memory": true
68
+ }
69
+ }
70
+ }
71
+ },
72
+ "model": {
73
+ "which_model": {
74
+ "name": [
75
+ "models.model",
76
+ "Palette"
77
+ ],
78
+ "args": {
79
+ "sample_num": 8,
80
+ "task": "decloud",
81
+ "ema_scheduler": {
82
+ "ema_start": 1,
83
+ "ema_iter": 1,
84
+ "ema_decay": 0.9999
85
+ },
86
+ "optimizers": [
87
+ {
88
+ "lr": 5e-05,
89
+ "weight_decay": 0
90
+ }
91
+ ]
92
+ }
93
+ },
94
+ "which_networks": [
95
+ {
96
+ "name": [
97
+ "models.network_x0_dpm_solver",
98
+ "Network"
99
+ ],
100
+ "args": {
101
+ "init_type": "kaiming",
102
+ "module_name": "double_encoder",
103
+ "unet": {
104
+ "img_channel": 3,
105
+ "width": 64,
106
+ "middle_blk_num": 1,
107
+ "enc_blk_nums": [1, 1, 1, 1],
108
+ "dec_blk_nums": [1, 1, 1, 1]
109
+ },
110
+ "beta_schedule": {
111
+ "train": {
112
+ "schedule": "linear",
113
+ "n_timestep": 2000,
114
+ "linear_start": 1e-06,
115
+ "linear_end": 0.01
116
+ },
117
+ "test": {
118
+ "schedule": "linear",
119
+ "n_timestep": 1000,
120
+ "linear_start": 0.0001,
121
+ "linear_end": 0.09
122
+ }
123
+ }
124
+ }
125
+ }
126
+ ],
127
+ "which_losses": [
128
+ "mse_loss"
129
+ ],
130
+ "which_metrics": [
131
+ "mae"
132
+ ]
133
+ },
134
+ "train": {
135
+ "n_epoch": 3000,
136
+ "n_iter": 100000000,
137
+ "val_epoch": 10,
138
+ "save_checkpoint_epoch": 100,
139
+ "log_iter": 10000,
140
+ "tensorboard": true
141
+ },
142
+ "debug": {
143
+ "val_epoch": 1,
144
+ "save_checkpoint_epoch": 1,
145
+ "log_iter": 10,
146
+ "debug_split": 50
147
+ }
148
+ }
experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/nafnet128_1xb8_e3000_dpms_s20_noinp.json ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "nafnet128_1xb8_e3000_dpms_s20_noinp",
3
+ "gpu_ids": [
4
+ 3
5
+ ],
6
+ "seed": -1,
7
+ "finetune_norm": false,
8
+ "path": {
9
+ "base_dir": "experiments",
10
+ "code": "code",
11
+ "tb_logger": "tb_logger",
12
+ "results": "results",
13
+ "checkpoint": "checkpoint",
14
+ "resume_state": "experiments/train_nafnet128_1xb8_e3000_dpms_s20_noinp_230518_175307/checkpoint/3000"
15
+ },
16
+ "datasets": {
17
+ "train": {
18
+ "which_dataset": {
19
+ "name": [
20
+ "data.dataset",
21
+ "Sen2_MTC_New_Multi"
22
+ ],
23
+ "args": {
24
+ "data_root": "../pmaa/data",
25
+ "mode": "train"
26
+ }
27
+ },
28
+ "dataloader": {
29
+ "validation_split": 2,
30
+ "args": {
31
+ "batch_size": 8,
32
+ "num_workers": 8,
33
+ "shuffle": true,
34
+ "pin_memory": true,
35
+ "drop_last": true
36
+ },
37
+ "val_args": {
38
+ "batch_size": 1,
39
+ "num_workers": 4,
40
+ "shuffle": false,
41
+ "pin_memory": true,
42
+ "drop_last": false
43
+ }
44
+ }
45
+ },
46
+ "val": {
47
+ "which_dataset": {
48
+ "name": "Sen2_MTC_New_Multi",
49
+ "args": {
50
+ "data_root": "../pmaa/data",
51
+ "mode": "val"
52
+ }
53
+ }
54
+ },
55
+ "test": {
56
+ "which_dataset": {
57
+ "name": "Sen2_MTC_New_Multi",
58
+ "args": {
59
+ "data_root": "../pmaa/data",
60
+ "mode": "test"
61
+ }
62
+ },
63
+ "dataloader": {
64
+ "args": {
65
+ "batch_size": 1,
66
+ "num_workers": 1,
67
+ "pin_memory": true
68
+ }
69
+ }
70
+ }
71
+ },
72
+ "model": {
73
+ "which_model": {
74
+ "name": [
75
+ "models.model",
76
+ "Palette"
77
+ ],
78
+ "args": {
79
+ "sample_num": 8,
80
+ "task": "decloud",
81
+ "ema_scheduler": {
82
+ "ema_start": 1,
83
+ "ema_iter": 1,
84
+ "ema_decay": 0.9999
85
+ },
86
+ "optimizers": [
87
+ {
88
+ "lr": 5e-05,
89
+ "weight_decay": 0
90
+ }
91
+ ]
92
+ }
93
+ },
94
+ "which_networks": [
95
+ {
96
+ "name": [
97
+ "models.network_x0_dpm_solver",
98
+ "Network"
99
+ ],
100
+ "args": {
101
+ "init_type": "kaiming",
102
+ "module_name": "nafnet",
103
+ "unet": {
104
+ "img_channel": 12,
105
+ "width": 128,
106
+ "middle_blk_num": 1,
107
+ "enc_blk_nums": [1, 1, 1, 1],
108
+ "dec_blk_nums": [1, 1, 1, 1]
109
+ },
110
+ "beta_schedule": {
111
+ "train": {
112
+ "schedule": "linear",
113
+ "n_timestep": 2000,
114
+ "linear_start": 1e-06,
115
+ "linear_end": 0.01
116
+ },
117
+ "test": {
118
+ "schedule": "linear",
119
+ "n_timestep": 1000,
120
+ "linear_start": 0.0001,
121
+ "linear_end": 0.09
122
+ }
123
+ }
124
+ }
125
+ }
126
+ ],
127
+ "which_losses": [
128
+ "mse_loss"
129
+ ],
130
+ "which_metrics": [
131
+ "mae"
132
+ ]
133
+ },
134
+ "train": {
135
+ "n_epoch": 3000,
136
+ "n_iter": 100000000,
137
+ "val_epoch": 10,
138
+ "save_checkpoint_epoch": 100,
139
+ "log_iter": 10000,
140
+ "tensorboard": true
141
+ },
142
+ "debug": {
143
+ "val_epoch": 1,
144
+ "save_checkpoint_epoch": 1,
145
+ "log_iter": 10,
146
+ "debug_split": 50
147
+ }
148
+ }
experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/nafnet16_1xb8_e3000_dpms_s20_noinp.json ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "nafnet16_1xb8_e3000_dpms_s20_noinp",
3
+ "gpu_ids": [
4
+ 2
5
+ ],
6
+ "seed": -1,
7
+ "finetune_norm": false,
8
+ "path": {
9
+ "base_dir": "experiments",
10
+ "code": "code",
11
+ "tb_logger": "tb_logger",
12
+ "results": "results",
13
+ "checkpoint": "checkpoint",
14
+ "resume_state": "experiments/train_nafnet16_1xb8_e3000_dpms_s20_noinp_230518_175110/checkpoint/3000"
15
+ },
16
+ "datasets": {
17
+ "train": {
18
+ "which_dataset": {
19
+ "name": [
20
+ "data.dataset",
21
+ "Sen2_MTC_New_Multi"
22
+ ],
23
+ "args": {
24
+ "data_root": "../pmaa/data",
25
+ "mode": "train"
26
+ }
27
+ },
28
+ "dataloader": {
29
+ "validation_split": 2,
30
+ "args": {
31
+ "batch_size": 8,
32
+ "num_workers": 8,
33
+ "shuffle": true,
34
+ "pin_memory": true,
35
+ "drop_last": true
36
+ },
37
+ "val_args": {
38
+ "batch_size": 1,
39
+ "num_workers": 4,
40
+ "shuffle": false,
41
+ "pin_memory": true,
42
+ "drop_last": false
43
+ }
44
+ }
45
+ },
46
+ "val": {
47
+ "which_dataset": {
48
+ "name": "Sen2_MTC_New_Multi",
49
+ "args": {
50
+ "data_root": "../pmaa/data",
51
+ "mode": "val"
52
+ }
53
+ }
54
+ },
55
+ "test": {
56
+ "which_dataset": {
57
+ "name": "Sen2_MTC_New_Multi",
58
+ "args": {
59
+ "data_root": "../pmaa/data",
60
+ "mode": "test"
61
+ }
62
+ },
63
+ "dataloader": {
64
+ "args": {
65
+ "batch_size": 1,
66
+ "num_workers": 1,
67
+ "pin_memory": true
68
+ }
69
+ }
70
+ }
71
+ },
72
+ "model": {
73
+ "which_model": {
74
+ "name": [
75
+ "models.model",
76
+ "Palette"
77
+ ],
78
+ "args": {
79
+ "sample_num": 8,
80
+ "task": "decloud",
81
+ "ema_scheduler": {
82
+ "ema_start": 1,
83
+ "ema_iter": 1,
84
+ "ema_decay": 0.9999
85
+ },
86
+ "optimizers": [
87
+ {
88
+ "lr": 5e-05,
89
+ "weight_decay": 0
90
+ }
91
+ ]
92
+ }
93
+ },
94
+ "which_networks": [
95
+ {
96
+ "name": [
97
+ "models.network_x0_dpm_solver",
98
+ "Network"
99
+ ],
100
+ "args": {
101
+ "init_type": "kaiming",
102
+ "module_name": "nafnet",
103
+ "unet": {
104
+ "img_channel": 12,
105
+ "width": 16,
106
+ "middle_blk_num": 1,
107
+ "enc_blk_nums": [1, 1, 1, 1],
108
+ "dec_blk_nums": [1, 1, 1, 1]
109
+ },
110
+ "beta_schedule": {
111
+ "train": {
112
+ "schedule": "linear",
113
+ "n_timestep": 2000,
114
+ "linear_start": 1e-06,
115
+ "linear_end": 0.01
116
+ },
117
+ "test": {
118
+ "schedule": "linear",
119
+ "n_timestep": 1000,
120
+ "linear_start": 0.0001,
121
+ "linear_end": 0.09
122
+ }
123
+ }
124
+ }
125
+ }
126
+ ],
127
+ "which_losses": [
128
+ "mse_loss"
129
+ ],
130
+ "which_metrics": [
131
+ "mae"
132
+ ]
133
+ },
134
+ "train": {
135
+ "n_epoch": 3000,
136
+ "n_iter": 100000000,
137
+ "val_epoch": 10,
138
+ "save_checkpoint_epoch": 100,
139
+ "log_iter": 10000,
140
+ "tensorboard": true
141
+ },
142
+ "debug": {
143
+ "val_epoch": 1,
144
+ "save_checkpoint_epoch": 1,
145
+ "log_iter": 10,
146
+ "debug_split": 50
147
+ }
148
+ }
experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/nafnet32_1xb8_e3000_dpms_s20_noinp.json ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "nafnet32_1xb8_e3000_dpms_s20_noinp",
3
+ "gpu_ids": [
4
+ 0
5
+ ],
6
+ "seed": -1,
7
+ "finetune_norm": false,
8
+ "path": {
9
+ "base_dir": "experiments",
10
+ "code": "code",
11
+ "tb_logger": "tb_logger",
12
+ "results": "results",
13
+ "checkpoint": "checkpoint",
14
+ "resume_state": "experiments/train_nafnet32_1xb8_e3000_dpms_s20_noinp_230518_174833/checkpoint/3000"
15
+ },
16
+ "datasets": {
17
+ "train": {
18
+ "which_dataset": {
19
+ "name": [
20
+ "data.dataset",
21
+ "Sen2_MTC_New_Multi"
22
+ ],
23
+ "args": {
24
+ "data_root": "../pmaa/data",
25
+ "mode": "train"
26
+ }
27
+ },
28
+ "dataloader": {
29
+ "validation_split": 2,
30
+ "args": {
31
+ "batch_size": 8,
32
+ "num_workers": 8,
33
+ "shuffle": true,
34
+ "pin_memory": true,
35
+ "drop_last": true
36
+ },
37
+ "val_args": {
38
+ "batch_size": 1,
39
+ "num_workers": 4,
40
+ "shuffle": false,
41
+ "pin_memory": true,
42
+ "drop_last": false
43
+ }
44
+ }
45
+ },
46
+ "val": {
47
+ "which_dataset": {
48
+ "name": "Sen2_MTC_New_Multi",
49
+ "args": {
50
+ "data_root": "../pmaa/data",
51
+ "mode": "val"
52
+ }
53
+ }
54
+ },
55
+ "test": {
56
+ "which_dataset": {
57
+ "name": "Sen2_MTC_New_Multi",
58
+ "args": {
59
+ "data_root": "../pmaa/data",
60
+ "mode": "test"
61
+ }
62
+ },
63
+ "dataloader": {
64
+ "args": {
65
+ "batch_size": 1,
66
+ "num_workers": 1,
67
+ "pin_memory": true
68
+ }
69
+ }
70
+ }
71
+ },
72
+ "model": {
73
+ "which_model": {
74
+ "name": [
75
+ "models.model",
76
+ "Palette"
77
+ ],
78
+ "args": {
79
+ "sample_num": 8,
80
+ "task": "decloud",
81
+ "ema_scheduler": {
82
+ "ema_start": 1,
83
+ "ema_iter": 1,
84
+ "ema_decay": 0.9999
85
+ },
86
+ "optimizers": [
87
+ {
88
+ "lr": 5e-05,
89
+ "weight_decay": 0
90
+ }
91
+ ]
92
+ }
93
+ },
94
+ "which_networks": [
95
+ {
96
+ "name": [
97
+ "models.network_x0_dpm_solver",
98
+ "Network"
99
+ ],
100
+ "args": {
101
+ "init_type": "kaiming",
102
+ "module_name": "nafnet",
103
+ "unet": {
104
+ "img_channel": 12,
105
+ "width": 32,
106
+ "middle_blk_num": 1,
107
+ "enc_blk_nums": [1, 1, 1, 1],
108
+ "dec_blk_nums": [1, 1, 1, 1]
109
+ },
110
+ "beta_schedule": {
111
+ "train": {
112
+ "schedule": "linear",
113
+ "n_timestep": 2000,
114
+ "linear_start": 1e-06,
115
+ "linear_end": 0.01
116
+ },
117
+ "test": {
118
+ "schedule": "linear",
119
+ "n_timestep": 1000,
120
+ "linear_start": 0.0001,
121
+ "linear_end": 0.09
122
+ }
123
+ }
124
+ }
125
+ }
126
+ ],
127
+ "which_losses": [
128
+ "mse_loss"
129
+ ],
130
+ "which_metrics": [
131
+ "mae"
132
+ ]
133
+ },
134
+ "train": {
135
+ "n_epoch": 3000,
136
+ "n_iter": 100000000,
137
+ "val_epoch": 10,
138
+ "save_checkpoint_epoch": 100,
139
+ "log_iter": 10000,
140
+ "tensorboard": true
141
+ },
142
+ "debug": {
143
+ "val_epoch": 1,
144
+ "save_checkpoint_epoch": 1,
145
+ "log_iter": 10,
146
+ "debug_split": 50
147
+ }
148
+ }
experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/nafnet64_1131_encoder_1xb8_e3000_dpms_s20_noinp.json ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "nafnet64_1131_encoder_1xb8_e3000_dpms_s20_noinp",
3
+ "gpu_ids": [
4
+ 1
5
+ ],
6
+ "seed": -1,
7
+ "finetune_norm": false,
8
+ "path": {
9
+ "base_dir": "experiments",
10
+ "code": "code",
11
+ "tb_logger": "tb_logger",
12
+ "results": "results",
13
+ "checkpoint": "checkpoint",
14
+ "resume_state": "experiments/train_nafnet64_1131_encoder_1xb8_e3000_dpms_s20_noinp_230520_171633/checkpoint/3000"
15
+ },
16
+ "datasets": {
17
+ "train": {
18
+ "which_dataset": {
19
+ "name": [
20
+ "data.dataset",
21
+ "Sen2_MTC_New_Multi"
22
+ ],
23
+ "args": {
24
+ "data_root": "../pmaa/data",
25
+ "mode": "train"
26
+ }
27
+ },
28
+ "dataloader": {
29
+ "validation_split": 2,
30
+ "args": {
31
+ "batch_size": 8,
32
+ "num_workers": 8,
33
+ "shuffle": true,
34
+ "pin_memory": true,
35
+ "drop_last": true
36
+ },
37
+ "val_args": {
38
+ "batch_size": 1,
39
+ "num_workers": 4,
40
+ "shuffle": false,
41
+ "pin_memory": true,
42
+ "drop_last": false
43
+ }
44
+ }
45
+ },
46
+ "val": {
47
+ "which_dataset": {
48
+ "name": "Sen2_MTC_New_Multi",
49
+ "args": {
50
+ "data_root": "../pmaa/data",
51
+ "mode": "val"
52
+ }
53
+ }
54
+ },
55
+ "test": {
56
+ "which_dataset": {
57
+ "name": "Sen2_MTC_New_Multi",
58
+ "args": {
59
+ "data_root": "../pmaa/data",
60
+ "mode": "test"
61
+ }
62
+ },
63
+ "dataloader": {
64
+ "args": {
65
+ "batch_size": 1,
66
+ "num_workers": 1,
67
+ "pin_memory": true
68
+ }
69
+ }
70
+ }
71
+ },
72
+ "model": {
73
+ "which_model": {
74
+ "name": [
75
+ "models.model",
76
+ "Palette"
77
+ ],
78
+ "args": {
79
+ "sample_num": 8,
80
+ "task": "decloud",
81
+ "ema_scheduler": {
82
+ "ema_start": 1,
83
+ "ema_iter": 1,
84
+ "ema_decay": 0.9999
85
+ },
86
+ "optimizers": [
87
+ {
88
+ "lr": 5e-05,
89
+ "weight_decay": 0
90
+ }
91
+ ]
92
+ }
93
+ },
94
+ "which_networks": [
95
+ {
96
+ "name": [
97
+ "models.network_x0_dpm_solver",
98
+ "Network"
99
+ ],
100
+ "args": {
101
+ "init_type": "kaiming",
102
+ "module_name": "nafnet",
103
+ "unet": {
104
+ "img_channel": 12,
105
+ "width": 64,
106
+ "middle_blk_num": 1,
107
+ "enc_blk_nums": [1, 1, 3, 1],
108
+ "dec_blk_nums": [1, 1, 1, 1]
109
+ },
110
+ "beta_schedule": {
111
+ "train": {
112
+ "schedule": "linear",
113
+ "n_timestep": 2000,
114
+ "linear_start": 1e-06,
115
+ "linear_end": 0.01
116
+ },
117
+ "test": {
118
+ "schedule": "linear",
119
+ "n_timestep": 1000,
120
+ "linear_start": 0.0001,
121
+ "linear_end": 0.09
122
+ }
123
+ }
124
+ }
125
+ }
126
+ ],
127
+ "which_losses": [
128
+ "mse_loss"
129
+ ],
130
+ "which_metrics": [
131
+ "mae"
132
+ ]
133
+ },
134
+ "train": {
135
+ "n_epoch": 3000,
136
+ "n_iter": 100000000,
137
+ "val_epoch": 10,
138
+ "save_checkpoint_epoch": 100,
139
+ "log_iter": 10000,
140
+ "tensorboard": true
141
+ },
142
+ "debug": {
143
+ "val_epoch": 1,
144
+ "save_checkpoint_epoch": 1,
145
+ "log_iter": 10,
146
+ "debug_split": 50
147
+ }
148
+ }
experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/nafnet64_newca_1xb8_e3000_dpms_s20_noinp.json ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "nafnet64_newca_noinp",
3
+ "gpu_ids": [
4
+ 0
5
+ ],
6
+ "seed": -1,
7
+ "finetune_norm": false,
8
+ "path": {
9
+ "base_dir": "experiments",
10
+ "code": "code",
11
+ "tb_logger": "tb_logger",
12
+ "results": "results",
13
+ "checkpoint": "checkpoint",
14
+ "resume_state": "experiments/train_nafnet64_newca_noinp_230528_021014/checkpoint/3000"
15
+ },
16
+ "datasets": {
17
+ "train": {
18
+ "which_dataset": {
19
+ "name": [
20
+ "data.dataset",
21
+ "Sen2_MTC_New_Multi"
22
+ ],
23
+ "args": {
24
+ "data_root": "../pmaa/data",
25
+ "mode": "train"
26
+ }
27
+ },
28
+ "dataloader": {
29
+ "validation_split": 2,
30
+ "args": {
31
+ "batch_size": 8,
32
+ "num_workers": 8,
33
+ "shuffle": true,
34
+ "pin_memory": true,
35
+ "drop_last": true
36
+ },
37
+ "val_args": {
38
+ "batch_size": 1,
39
+ "num_workers": 1,
40
+ "shuffle": false,
41
+ "pin_memory": true,
42
+ "drop_last": false
43
+ }
44
+ }
45
+ },
46
+ "val": {
47
+ "which_dataset": {
48
+ "name": "Sen2_MTC_New_Multi",
49
+ "args": {
50
+ "data_root": "../pmaa/data",
51
+ "mode": "val"
52
+ }
53
+ }
54
+ },
55
+ "test": {
56
+ "which_dataset": {
57
+ "name": "Sen2_MTC_New_Multi",
58
+ "args": {
59
+ "data_root": "../pmaa/data",
60
+ "mode": "test"
61
+ }
62
+ },
63
+ "dataloader": {
64
+ "args": {
65
+ "batch_size": 1,
66
+ "num_workers": 1,
67
+ "pin_memory": true
68
+ }
69
+ }
70
+ }
71
+ },
72
+ "model": {
73
+ "which_model": {
74
+ "name": [
75
+ "models.model",
76
+ "Palette"
77
+ ],
78
+ "args": {
79
+ "sample_num": 8,
80
+ "task": "decloud",
81
+ "ema_scheduler": {
82
+ "ema_start": 1,
83
+ "ema_iter": 1,
84
+ "ema_decay": 0.9999
85
+ },
86
+ "optimizers": [
87
+ {
88
+ "lr": 5e-05,
89
+ "weight_decay": 0
90
+ }
91
+ ]
92
+ }
93
+ },
94
+ "which_networks": [
95
+ {
96
+ "name": [
97
+ "models.network_x0_dpm_solver",
98
+ "Network"
99
+ ],
100
+ "args": {
101
+ "init_type": "kaiming",
102
+ "module_name": "nafnet_newca_noinp",
103
+ "unet": {
104
+ "img_channel": 12,
105
+ "width": 64,
106
+ "middle_blk_num": 1,
107
+ "enc_blk_nums": [1, 1, 1, 1],
108
+ "dec_blk_nums": [1, 1, 1, 1]
109
+ },
110
+ "beta_schedule": {
111
+ "train": {
112
+ "schedule": "linear",
113
+ "n_timestep": 2000,
114
+ "linear_start": 1e-06,
115
+ "linear_end": 0.01
116
+ },
117
+ "test": {
118
+ "schedule": "linear",
119
+ "n_timestep": 1000,
120
+ "linear_start": 0.0001,
121
+ "linear_end": 0.09
122
+ }
123
+ }
124
+ }
125
+ }
126
+ ],
127
+ "which_losses": [
128
+ "mse_loss"
129
+ ],
130
+ "which_metrics": [
131
+ "mae"
132
+ ]
133
+ },
134
+ "train": {
135
+ "n_epoch": 3000,
136
+ "n_iter": 100000000,
137
+ "val_epoch": 500,
138
+ "save_checkpoint_epoch": 500,
139
+ "log_iter": 10000,
140
+ "tensorboard": true
141
+ },
142
+ "debug": {
143
+ "val_epoch": 1,
144
+ "save_checkpoint_epoch": 1,
145
+ "log_iter": 10,
146
+ "debug_split": 50
147
+ }
148
+ }
experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/nafnet64_nosca_silu_noinp_1xb8_e3000_dpms_s20_noinp.json ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "nafnet64_nosca_silu_noinp",
3
+ "gpu_ids": [
4
+ 3
5
+ ],
6
+ "seed": -1,
7
+ "finetune_norm": false,
8
+ "path": {
9
+ "base_dir": "experiments",
10
+ "code": "code",
11
+ "tb_logger": "tb_logger",
12
+ "results": "results",
13
+ "checkpoint": "checkpoint",
14
+ "resume_state": "experiments/train_nafnet64_nosca_silu_noinp_230528_021215/checkpoint/3000"
15
+ },
16
+ "datasets": {
17
+ "train": {
18
+ "which_dataset": {
19
+ "name": [
20
+ "data.dataset",
21
+ "Sen2_MTC_New_Multi"
22
+ ],
23
+ "args": {
24
+ "data_root": "../pmaa/data",
25
+ "mode": "train"
26
+ }
27
+ },
28
+ "dataloader": {
29
+ "validation_split": 2,
30
+ "args": {
31
+ "batch_size": 8,
32
+ "num_workers": 8,
33
+ "shuffle": true,
34
+ "pin_memory": true,
35
+ "drop_last": true
36
+ },
37
+ "val_args": {
38
+ "batch_size": 1,
39
+ "num_workers": 1,
40
+ "shuffle": false,
41
+ "pin_memory": true,
42
+ "drop_last": false
43
+ }
44
+ }
45
+ },
46
+ "val": {
47
+ "which_dataset": {
48
+ "name": "Sen2_MTC_New_Multi",
49
+ "args": {
50
+ "data_root": "../pmaa/data",
51
+ "mode": "val"
52
+ }
53
+ }
54
+ },
55
+ "test": {
56
+ "which_dataset": {
57
+ "name": "Sen2_MTC_New_Multi",
58
+ "args": {
59
+ "data_root": "../pmaa/data",
60
+ "mode": "test"
61
+ }
62
+ },
63
+ "dataloader": {
64
+ "args": {
65
+ "batch_size": 1,
66
+ "num_workers": 1,
67
+ "pin_memory": true
68
+ }
69
+ }
70
+ }
71
+ },
72
+ "model": {
73
+ "which_model": {
74
+ "name": [
75
+ "models.model",
76
+ "Palette"
77
+ ],
78
+ "args": {
79
+ "sample_num": 8,
80
+ "task": "decloud",
81
+ "ema_scheduler": {
82
+ "ema_start": 1,
83
+ "ema_iter": 1,
84
+ "ema_decay": 0.9999
85
+ },
86
+ "optimizers": [
87
+ {
88
+ "lr": 5e-05,
89
+ "weight_decay": 0
90
+ }
91
+ ]
92
+ }
93
+ },
94
+ "which_networks": [
95
+ {
96
+ "name": [
97
+ "models.network_x0_dpm_solver",
98
+ "Network"
99
+ ],
100
+ "args": {
101
+ "init_type": "kaiming",
102
+ "module_name": "nafnet_nosca_silu_noinp",
103
+ "unet": {
104
+ "img_channel": 12,
105
+ "width": 64,
106
+ "middle_blk_num": 1,
107
+ "enc_blk_nums": [1, 1, 1, 1],
108
+ "dec_blk_nums": [1, 1, 1, 1]
109
+ },
110
+ "beta_schedule": {
111
+ "train": {
112
+ "schedule": "linear",
113
+ "n_timestep": 2000,
114
+ "linear_start": 1e-06,
115
+ "linear_end": 0.01
116
+ },
117
+ "test": {
118
+ "schedule": "linear",
119
+ "n_timestep": 1000,
120
+ "linear_start": 0.0001,
121
+ "linear_end": 0.09
122
+ }
123
+ }
124
+ }
125
+ }
126
+ ],
127
+ "which_losses": [
128
+ "mse_loss"
129
+ ],
130
+ "which_metrics": [
131
+ "mae"
132
+ ]
133
+ },
134
+ "train": {
135
+ "n_epoch": 3000,
136
+ "n_iter": 100000000,
137
+ "val_epoch": 500,
138
+ "save_checkpoint_epoch": 500,
139
+ "log_iter": 10000,
140
+ "tensorboard": true
141
+ },
142
+ "debug": {
143
+ "val_epoch": 1,
144
+ "save_checkpoint_epoch": 1,
145
+ "log_iter": 10,
146
+ "debug_split": 50
147
+ }
148
+ }
experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/nafnet64_ours_1xb8_e3000_dpms_s20_noinp.json ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "nafnet64_ours_1xb8_e3000_dpms_s20_noinp",
3
+ "gpu_ids": [
4
+ 0
5
+ ],
6
+ "seed": -1,
7
+ "finetune_norm": false,
8
+ "path": {
9
+ "base_dir": "experiments",
10
+ "code": "code",
11
+ "tb_logger": "tb_logger",
12
+ "results": "results",
13
+ "checkpoint": "checkpoint",
14
+ "resume_state": "experiments/train_nafnet64_ours_1xb8_e3000_dpms_s20_noinp_230520_094059/checkpoint/3000"
15
+ },
16
+ "datasets": {
17
+ "train": {
18
+ "which_dataset": {
19
+ "name": [
20
+ "data.dataset",
21
+ "Sen2_MTC_New_Multi"
22
+ ],
23
+ "args": {
24
+ "data_root": "../pmaa/data",
25
+ "mode": "train"
26
+ }
27
+ },
28
+ "dataloader": {
29
+ "validation_split": 2,
30
+ "args": {
31
+ "batch_size": 8,
32
+ "num_workers": 8,
33
+ "shuffle": true,
34
+ "pin_memory": true,
35
+ "drop_last": true
36
+ },
37
+ "val_args": {
38
+ "batch_size": 1,
39
+ "num_workers": 1,
40
+ "shuffle": false,
41
+ "pin_memory": true,
42
+ "drop_last": false
43
+ }
44
+ }
45
+ },
46
+ "val": {
47
+ "which_dataset": {
48
+ "name": "Sen2_MTC_New_Multi",
49
+ "args": {
50
+ "data_root": "../pmaa/data",
51
+ "mode": "val"
52
+ }
53
+ }
54
+ },
55
+ "test": {
56
+ "which_dataset": {
57
+ "name": "Sen2_MTC_New_Multi",
58
+ "args": {
59
+ "data_root": "../pmaa/data",
60
+ "mode": "test"
61
+ }
62
+ },
63
+ "dataloader": {
64
+ "args": {
65
+ "batch_size": 1,
66
+ "num_workers": 1,
67
+ "pin_memory": true
68
+ }
69
+ }
70
+ }
71
+ },
72
+ "model": {
73
+ "which_model": {
74
+ "name": [
75
+ "models.model",
76
+ "Palette"
77
+ ],
78
+ "args": {
79
+ "sample_num": 8,
80
+ "task": "decloud",
81
+ "ema_scheduler": {
82
+ "ema_start": 1,
83
+ "ema_iter": 1,
84
+ "ema_decay": 0.9999
85
+ },
86
+ "optimizers": [
87
+ {
88
+ "lr": 5e-05,
89
+ "weight_decay": 0
90
+ }
91
+ ]
92
+ }
93
+ },
94
+ "which_networks": [
95
+ {
96
+ "name": [
97
+ "models.network_x0_dpm_solver",
98
+ "Network"
99
+ ],
100
+ "args": {
101
+ "init_type": "kaiming",
102
+ "module_name": "nafnet_ours",
103
+ "unet": {
104
+ "img_channel": 12,
105
+ "width": 64,
106
+ "middle_blk_num": 1,
107
+ "enc_blk_nums": [1, 1, 1, 1],
108
+ "dec_blk_nums": [1, 1, 1, 1]
109
+ },
110
+ "beta_schedule": {
111
+ "train": {
112
+ "schedule": "linear",
113
+ "n_timestep": 2000,
114
+ "linear_start": 1e-06,
115
+ "linear_end": 0.01
116
+ },
117
+ "test": {
118
+ "schedule": "linear",
119
+ "n_timestep": 1000,
120
+ "linear_start": 0.0001,
121
+ "linear_end": 0.09
122
+ }
123
+ }
124
+ }
125
+ }
126
+ ],
127
+ "which_losses": [
128
+ "mse_loss"
129
+ ],
130
+ "which_metrics": [
131
+ "mae"
132
+ ]
133
+ },
134
+ "train": {
135
+ "n_epoch": 3000,
136
+ "n_iter": 100000000,
137
+ "val_epoch": 100,
138
+ "save_checkpoint_epoch": 500,
139
+ "log_iter": 10000,
140
+ "tensorboard": true
141
+ },
142
+ "debug": {
143
+ "val_epoch": 1,
144
+ "save_checkpoint_epoch": 1,
145
+ "log_iter": 10,
146
+ "debug_split": 50
147
+ }
148
+ }
experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/nafnet64_res_1xb8_e3000_dpms_s20_noinp.json ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "nafnet64_res_1xb8_e3000_dpms_s20_noinp",
3
+ "gpu_ids": [
4
+ 2
5
+ ],
6
+ "seed": -1,
7
+ "finetune_norm": false,
8
+ "path": {
9
+ "base_dir": "experiments",
10
+ "code": "code",
11
+ "tb_logger": "tb_logger",
12
+ "results": "results",
13
+ "checkpoint": "checkpoint",
14
+ "resume_state": "experiments/train_nafnet64_res_1xb8_e3000_dpms_s20_noinp_230520_101605/checkpoint/3000"
15
+ },
16
+ "datasets": {
17
+ "train": {
18
+ "which_dataset": {
19
+ "name": [
20
+ "data.dataset",
21
+ "Sen2_MTC_New_Multi"
22
+ ],
23
+ "args": {
24
+ "data_root": "../pmaa/data",
25
+ "mode": "train"
26
+ }
27
+ },
28
+ "dataloader": {
29
+ "validation_split": 2,
30
+ "args": {
31
+ "batch_size": 8,
32
+ "num_workers": 8,
33
+ "shuffle": true,
34
+ "pin_memory": true,
35
+ "drop_last": true
36
+ },
37
+ "val_args": {
38
+ "batch_size": 1,
39
+ "num_workers": 1,
40
+ "shuffle": false,
41
+ "pin_memory": true,
42
+ "drop_last": false
43
+ }
44
+ }
45
+ },
46
+ "val": {
47
+ "which_dataset": {
48
+ "name": "Sen2_MTC_New_Multi",
49
+ "args": {
50
+ "data_root": "../pmaa/data",
51
+ "mode": "val"
52
+ }
53
+ }
54
+ },
55
+ "test": {
56
+ "which_dataset": {
57
+ "name": "Sen2_MTC_New_Multi",
58
+ "args": {
59
+ "data_root": "../pmaa/data",
60
+ "mode": "test"
61
+ }
62
+ },
63
+ "dataloader": {
64
+ "args": {
65
+ "batch_size": 1,
66
+ "num_workers": 1,
67
+ "pin_memory": true
68
+ }
69
+ }
70
+ }
71
+ },
72
+ "model": {
73
+ "which_model": {
74
+ "name": [
75
+ "models.model",
76
+ "Palette"
77
+ ],
78
+ "args": {
79
+ "sample_num": 8,
80
+ "task": "decloud",
81
+ "ema_scheduler": {
82
+ "ema_start": 1,
83
+ "ema_iter": 1,
84
+ "ema_decay": 0.9999
85
+ },
86
+ "optimizers": [
87
+ {
88
+ "lr": 5e-05,
89
+ "weight_decay": 0
90
+ }
91
+ ]
92
+ }
93
+ },
94
+ "which_networks": [
95
+ {
96
+ "name": [
97
+ "models.network_x0_dpm_solver",
98
+ "Network"
99
+ ],
100
+ "args": {
101
+ "init_type": "kaiming",
102
+ "module_name": "nafnet_res",
103
+ "unet": {
104
+ "img_channel": 12,
105
+ "width": 64,
106
+ "middle_blk_num": 1,
107
+ "enc_blk_nums": [1, 1, 1, 1],
108
+ "dec_blk_nums": [1, 1, 1, 1]
109
+ },
110
+ "beta_schedule": {
111
+ "train": {
112
+ "schedule": "linear",
113
+ "n_timestep": 2000,
114
+ "linear_start": 1e-06,
115
+ "linear_end": 0.01
116
+ },
117
+ "test": {
118
+ "schedule": "linear",
119
+ "n_timestep": 1000,
120
+ "linear_start": 0.0001,
121
+ "linear_end": 0.09
122
+ }
123
+ }
124
+ }
125
+ }
126
+ ],
127
+ "which_losses": [
128
+ "mse_loss"
129
+ ],
130
+ "which_metrics": [
131
+ "mae"
132
+ ]
133
+ },
134
+ "train": {
135
+ "n_epoch": 3000,
136
+ "n_iter": 100000000,
137
+ "val_epoch": 100,
138
+ "save_checkpoint_epoch": 500,
139
+ "log_iter": 10000,
140
+ "tensorboard": true
141
+ },
142
+ "debug": {
143
+ "val_epoch": 1,
144
+ "save_checkpoint_epoch": 1,
145
+ "log_iter": 10,
146
+ "debug_split": 50
147
+ }
148
+ }
experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/nafnet64_reverseca_1xb8_e3000_dpms_s20_noinp.json ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "nafnet64_reverseca",
3
+ "gpu_ids": [
4
+ 1
5
+ ],
6
+ "seed": -1,
7
+ "finetune_norm": false,
8
+ "path": {
9
+ "base_dir": "experiments",
10
+ "code": "code",
11
+ "tb_logger": "tb_logger",
12
+ "results": "results",
13
+ "checkpoint": "checkpoint",
14
+ "resume_state": "experiments/train_nafnet64_reverseca_230528_021307/checkpoint/3000"
15
+ },
16
+ "datasets": {
17
+ "train": {
18
+ "which_dataset": {
19
+ "name": [
20
+ "data.dataset",
21
+ "Sen2_MTC_New_Multi"
22
+ ],
23
+ "args": {
24
+ "data_root": "../pmaa/data",
25
+ "mode": "train"
26
+ }
27
+ },
28
+ "dataloader": {
29
+ "validation_split": 2,
30
+ "args": {
31
+ "batch_size": 8,
32
+ "num_workers": 8,
33
+ "shuffle": true,
34
+ "pin_memory": true,
35
+ "drop_last": true
36
+ },
37
+ "val_args": {
38
+ "batch_size": 1,
39
+ "num_workers": 1,
40
+ "shuffle": false,
41
+ "pin_memory": true,
42
+ "drop_last": false
43
+ }
44
+ }
45
+ },
46
+ "val": {
47
+ "which_dataset": {
48
+ "name": "Sen2_MTC_New_Multi",
49
+ "args": {
50
+ "data_root": "../pmaa/data",
51
+ "mode": "val"
52
+ }
53
+ }
54
+ },
55
+ "test": {
56
+ "which_dataset": {
57
+ "name": "Sen2_MTC_New_Multi",
58
+ "args": {
59
+ "data_root": "../pmaa/data",
60
+ "mode": "test"
61
+ }
62
+ },
63
+ "dataloader": {
64
+ "args": {
65
+ "batch_size": 1,
66
+ "num_workers": 1,
67
+ "pin_memory": true
68
+ }
69
+ }
70
+ }
71
+ },
72
+ "model": {
73
+ "which_model": {
74
+ "name": [
75
+ "models.model",
76
+ "Palette"
77
+ ],
78
+ "args": {
79
+ "sample_num": 8,
80
+ "task": "decloud",
81
+ "ema_scheduler": {
82
+ "ema_start": 1,
83
+ "ema_iter": 1,
84
+ "ema_decay": 0.9999
85
+ },
86
+ "optimizers": [
87
+ {
88
+ "lr": 5e-05,
89
+ "weight_decay": 0
90
+ }
91
+ ]
92
+ }
93
+ },
94
+ "which_networks": [
95
+ {
96
+ "name": [
97
+ "models.network_x0_dpm_solver",
98
+ "Network"
99
+ ],
100
+ "args": {
101
+ "init_type": "kaiming",
102
+ "module_name": "nafnet_reverseca_noinp",
103
+ "unet": {
104
+ "img_channel": 12,
105
+ "width": 64,
106
+ "middle_blk_num": 1,
107
+ "enc_blk_nums": [1, 1, 1, 1],
108
+ "dec_blk_nums": [1, 1, 1, 1]
109
+ },
110
+ "beta_schedule": {
111
+ "train": {
112
+ "schedule": "linear",
113
+ "n_timestep": 2000,
114
+ "linear_start": 1e-06,
115
+ "linear_end": 0.01
116
+ },
117
+ "test": {
118
+ "schedule": "linear",
119
+ "n_timestep": 1000,
120
+ "linear_start": 0.0001,
121
+ "linear_end": 0.09
122
+ }
123
+ }
124
+ }
125
+ }
126
+ ],
127
+ "which_losses": [
128
+ "mse_loss"
129
+ ],
130
+ "which_metrics": [
131
+ "mae"
132
+ ]
133
+ },
134
+ "train": {
135
+ "n_epoch": 3000,
136
+ "n_iter": 100000000,
137
+ "val_epoch": 500,
138
+ "save_checkpoint_epoch": 500,
139
+ "log_iter": 10000,
140
+ "tensorboard": true
141
+ },
142
+ "debug": {
143
+ "val_epoch": 1,
144
+ "save_checkpoint_epoch": 1,
145
+ "log_iter": 10,
146
+ "debug_split": 50
147
+ }
148
+ }
experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/nafnet64_splitca_1xb8_e3000_dpms_s20_noinp.json ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "nafnet64_splitca",
3
+ "gpu_ids": [
4
+ 2
5
+ ],
6
+ "seed": -1,
7
+ "finetune_norm": false,
8
+ "path": {
9
+ "base_dir": "experiments",
10
+ "code": "code",
11
+ "tb_logger": "tb_logger",
12
+ "results": "results",
13
+ "checkpoint": "checkpoint",
14
+ "resume_state": "experiments/train_nafnet64_splitca_230525_063547/checkpoint/3000"
15
+ },
16
+ "datasets": {
17
+ "train": {
18
+ "which_dataset": {
19
+ "name": [
20
+ "data.dataset",
21
+ "Sen2_MTC_New_Multi"
22
+ ],
23
+ "args": {
24
+ "data_root": "../pmaa/data",
25
+ "mode": "train"
26
+ }
27
+ },
28
+ "dataloader": {
29
+ "validation_split": 2,
30
+ "args": {
31
+ "batch_size": 8,
32
+ "num_workers": 8,
33
+ "shuffle": true,
34
+ "pin_memory": true,
35
+ "drop_last": true
36
+ },
37
+ "val_args": {
38
+ "batch_size": 1,
39
+ "num_workers": 1,
40
+ "shuffle": false,
41
+ "pin_memory": true,
42
+ "drop_last": false
43
+ }
44
+ }
45
+ },
46
+ "val": {
47
+ "which_dataset": {
48
+ "name": "Sen2_MTC_New_Multi",
49
+ "args": {
50
+ "data_root": "../pmaa/data",
51
+ "mode": "val"
52
+ }
53
+ }
54
+ },
55
+ "test": {
56
+ "which_dataset": {
57
+ "name": "Sen2_MTC_New_Multi",
58
+ "args": {
59
+ "data_root": "../pmaa/data",
60
+ "mode": "test"
61
+ }
62
+ },
63
+ "dataloader": {
64
+ "args": {
65
+ "batch_size": 1,
66
+ "num_workers": 1,
67
+ "pin_memory": true
68
+ }
69
+ }
70
+ }
71
+ },
72
+ "model": {
73
+ "which_model": {
74
+ "name": [
75
+ "models.model",
76
+ "Palette"
77
+ ],
78
+ "args": {
79
+ "sample_num": 8,
80
+ "task": "decloud",
81
+ "ema_scheduler": {
82
+ "ema_start": 1,
83
+ "ema_iter": 1,
84
+ "ema_decay": 0.9999
85
+ },
86
+ "optimizers": [
87
+ {
88
+ "lr": 5e-05,
89
+ "weight_decay": 0
90
+ }
91
+ ]
92
+ }
93
+ },
94
+ "which_networks": [
95
+ {
96
+ "name": [
97
+ "models.network_x0_dpm_solver",
98
+ "Network"
99
+ ],
100
+ "args": {
101
+ "init_type": "kaiming",
102
+ "module_name": "nafnet_splitca_noinp",
103
+ "unet": {
104
+ "img_channel": 12,
105
+ "width": 64,
106
+ "middle_blk_num": 1,
107
+ "enc_blk_nums": [1, 1, 1, 1],
108
+ "dec_blk_nums": [1, 1, 1, 1]
109
+ },
110
+ "beta_schedule": {
111
+ "train": {
112
+ "schedule": "linear",
113
+ "n_timestep": 2000,
114
+ "linear_start": 1e-06,
115
+ "linear_end": 0.01
116
+ },
117
+ "test": {
118
+ "schedule": "linear",
119
+ "n_timestep": 1000,
120
+ "linear_start": 0.0001,
121
+ "linear_end": 0.09
122
+ }
123
+ }
124
+ }
125
+ }
126
+ ],
127
+ "which_losses": [
128
+ "mse_loss"
129
+ ],
130
+ "which_metrics": [
131
+ "mae"
132
+ ]
133
+ },
134
+ "train": {
135
+ "n_epoch": 3000,
136
+ "n_iter": 100000000,
137
+ "val_epoch": 500,
138
+ "save_checkpoint_epoch": 500,
139
+ "log_iter": 10000,
140
+ "tensorboard": true
141
+ },
142
+ "debug": {
143
+ "val_epoch": 1,
144
+ "save_checkpoint_epoch": 1,
145
+ "log_iter": 10,
146
+ "debug_split": 50
147
+ }
148
+ }
experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/nafnet_1xb8_e3000_dpms_s20_noinp.json ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "nafnet_1xb8_e3000_dpms_s20_noinp",
3
+ "gpu_ids": [
4
+ 0
5
+ ],
6
+ "seed": -1,
7
+ "finetune_norm": false,
8
+ "path": {
9
+ "base_dir": "experiments",
10
+ "code": "code",
11
+ "tb_logger": "tb_logger",
12
+ "results": "results",
13
+ "checkpoint": "checkpoint",
14
+ "resume_state": "experiments/train_nafnet_1xb8_e3000_dpms_s20_noinp_230514_083943/checkpoint/3000"
15
+ },
16
+ "datasets": {
17
+ "train": {
18
+ "which_dataset": {
19
+ "name": [
20
+ "data.dataset",
21
+ "Sen2_MTC_New_Multi"
22
+ ],
23
+ "args": {
24
+ "data_root": "../pmaa/data",
25
+ "mode": "train"
26
+ }
27
+ },
28
+ "dataloader": {
29
+ "validation_split": 2,
30
+ "args": {
31
+ "batch_size": 8,
32
+ "num_workers": 8,
33
+ "shuffle": true,
34
+ "pin_memory": true,
35
+ "drop_last": true
36
+ },
37
+ "val_args": {
38
+ "batch_size": 1,
39
+ "num_workers": 4,
40
+ "shuffle": false,
41
+ "pin_memory": true,
42
+ "drop_last": false
43
+ }
44
+ }
45
+ },
46
+ "val": {
47
+ "which_dataset": {
48
+ "name": "Sen2_MTC_New_Multi",
49
+ "args": {
50
+ "data_root": "../pmaa/data",
51
+ "mode": "val"
52
+ }
53
+ }
54
+ },
55
+ "test": {
56
+ "which_dataset": {
57
+ "name": "Sen2_MTC_New_Multi",
58
+ "args": {
59
+ "data_root": "../pmaa/data",
60
+ "mode": "test"
61
+ }
62
+ },
63
+ "dataloader": {
64
+ "args": {
65
+ "batch_size": 1,
66
+ "num_workers": 1,
67
+ "pin_memory": true
68
+ }
69
+ }
70
+ }
71
+ },
72
+ "model": {
73
+ "which_model": {
74
+ "name": [
75
+ "models.model",
76
+ "Palette"
77
+ ],
78
+ "args": {
79
+ "sample_num": 8,
80
+ "task": "decloud",
81
+ "ema_scheduler": {
82
+ "ema_start": 1,
83
+ "ema_iter": 1,
84
+ "ema_decay": 0.9999
85
+ },
86
+ "optimizers": [
87
+ {
88
+ "lr": 5e-05,
89
+ "weight_decay": 0
90
+ }
91
+ ]
92
+ }
93
+ },
94
+ "which_networks": [
95
+ {
96
+ "name": [
97
+ "models.network_x0_dpm_solver",
98
+ "Network"
99
+ ],
100
+ "args": {
101
+ "init_type": "kaiming",
102
+ "module_name": "nafnet",
103
+ "unet": {
104
+ "img_channel": 12,
105
+ "width": 64,
106
+ "middle_blk_num": 1,
107
+ "enc_blk_nums": [1, 1, 1, 1],
108
+ "dec_blk_nums": [1, 1, 1, 1]
109
+ },
110
+ "beta_schedule": {
111
+ "train": {
112
+ "schedule": "linear",
113
+ "n_timestep": 2000,
114
+ "linear_start": 1e-06,
115
+ "linear_end": 0.01
116
+ },
117
+ "test": {
118
+ "schedule": "linear",
119
+ "n_timestep": 1000,
120
+ "linear_start": 0.0001,
121
+ "linear_end": 0.09
122
+ }
123
+ }
124
+ }
125
+ }
126
+ ],
127
+ "which_losses": [
128
+ "mse_loss"
129
+ ],
130
+ "which_metrics": [
131
+ "mae"
132
+ ]
133
+ },
134
+ "train": {
135
+ "n_epoch": 3000,
136
+ "n_iter": 100000000,
137
+ "val_epoch": 10,
138
+ "save_checkpoint_epoch": 100,
139
+ "log_iter": 10000,
140
+ "tensorboard": true
141
+ },
142
+ "debug": {
143
+ "val_epoch": 1,
144
+ "save_checkpoint_epoch": 1,
145
+ "log_iter": 10,
146
+ "debug_split": 50
147
+ }
148
+ }
experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/nafnet_concat_no_condskip_nodrop_noparams_splitca_double_encoder_decoder_middle_fusion.json ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "nafnet_concat_no_condskip_nodrop_noparams_splitca_double_encoder_decoder_middle_fusion",
3
+ "gpu_ids": [
4
+ 2
5
+ ],
6
+ "seed": -1,
7
+ "finetune_norm": false,
8
+ "path": {
9
+ "base_dir": "experiments",
10
+ "code": "code",
11
+ "tb_logger": "tb_logger",
12
+ "results": "results",
13
+ "checkpoint": "checkpoint",
14
+ "resume_state": "experiments/train_nafnet_concat_no_condskip_nodrop_noparams_splitca_double_encoder_decoder_middle_fusion_230604_042247/checkpoint/3000"
15
+ },
16
+ "datasets": {
17
+ "train": {
18
+ "which_dataset": {
19
+ "name": [
20
+ "data.dataset",
21
+ "Sen2_MTC_New_Multi"
22
+ ],
23
+ "args": {
24
+ "data_root": "../pmaa/data",
25
+ "mode": "train"
26
+ }
27
+ },
28
+ "dataloader": {
29
+ "validation_split": 2,
30
+ "args": {
31
+ "batch_size": 8,
32
+ "num_workers": 8,
33
+ "shuffle": true,
34
+ "pin_memory": true,
35
+ "drop_last": true
36
+ },
37
+ "val_args": {
38
+ "batch_size": 1,
39
+ "num_workers": 1,
40
+ "shuffle": false,
41
+ "pin_memory": true,
42
+ "drop_last": false
43
+ }
44
+ }
45
+ },
46
+ "val": {
47
+ "which_dataset": {
48
+ "name": "Sen2_MTC_New_Multi",
49
+ "args": {
50
+ "data_root": "../pmaa/data",
51
+ "mode": "val"
52
+ }
53
+ }
54
+ },
55
+ "test": {
56
+ "which_dataset": {
57
+ "name": "Sen2_MTC_New_Multi",
58
+ "args": {
59
+ "data_root": "../pmaa/data",
60
+ "mode": "test"
61
+ }
62
+ },
63
+ "dataloader": {
64
+ "args": {
65
+ "batch_size": 1,
66
+ "num_workers": 1,
67
+ "pin_memory": true
68
+ }
69
+ }
70
+ }
71
+ },
72
+ "model": {
73
+ "which_model": {
74
+ "name": [
75
+ "models.model",
76
+ "Palette"
77
+ ],
78
+ "args": {
79
+ "sample_num": 8,
80
+ "task": "decloud",
81
+ "ema_scheduler": {
82
+ "ema_start": 1,
83
+ "ema_iter": 1,
84
+ "ema_decay": 0.9999
85
+ },
86
+ "optimizers": [
87
+ {
88
+ "lr": 5e-05,
89
+ "weight_decay": 0
90
+ }
91
+ ]
92
+ }
93
+ },
94
+ "which_networks": [
95
+ {
96
+ "name": [
97
+ "models.network_x0_dpm_solver",
98
+ "Network"
99
+ ],
100
+ "args": {
101
+ "init_type": "kaiming",
102
+ "module_name": "nafnet_concat_no_condskip_nodrop_noparams_splitca_double_encoder_decoder_middle_fusion",
103
+ "unet": {
104
+ "img_channel": 3,
105
+ "width": 64,
106
+ "middle_blk_num": 1,
107
+ "enc_blk_nums": [1, 1, 1, 1],
108
+ "dec_blk_nums": [1, 1, 1, 1]
109
+ },
110
+ "beta_schedule": {
111
+ "train": {
112
+ "schedule": "linear",
113
+ "n_timestep": 2000,
114
+ "linear_start": 1e-06,
115
+ "linear_end": 0.01
116
+ },
117
+ "test": {
118
+ "schedule": "linear",
119
+ "n_timestep": 1000,
120
+ "linear_start": 0.0001,
121
+ "linear_end": 0.09
122
+ }
123
+ }
124
+ }
125
+ }
126
+ ],
127
+ "which_losses": [
128
+ "mse_loss"
129
+ ],
130
+ "which_metrics": [
131
+ "mae"
132
+ ]
133
+ },
134
+ "train": {
135
+ "n_epoch": 3000,
136
+ "n_iter": 100000000,
137
+ "val_epoch": 1000,
138
+ "save_checkpoint_epoch": 1000,
139
+ "log_iter": 10000,
140
+ "tensorboard": true
141
+ },
142
+ "debug": {
143
+ "val_epoch": 1,
144
+ "save_checkpoint_epoch": 1,
145
+ "log_iter": 10,
146
+ "debug_split": 50
147
+ }
148
+ }
experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/nafnet_concat_no_condskip_nodrop_noparams_splitca_double_encoder_decoder_noCondFFN_middle_fusion.json ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "nafnet_concat_no_condskip_nodrop_noparams_splitca_double_encoder_decoder_noCondFFN_middle_fusion",
3
+ "gpu_ids": [
4
+ 0
5
+ ],
6
+ "seed": -1,
7
+ "finetune_norm": false,
8
+ "path": {
9
+ "base_dir": "experiments",
10
+ "code": "code",
11
+ "tb_logger": "tb_logger",
12
+ "results": "results",
13
+ "checkpoint": "checkpoint",
14
+ "resume_state": "experiments/train_nafnet_concat_no_condskip_nodrop_noparams_splitca_double_encoder_decoder_noCondFFN_middle_fusion_230531_024841/checkpoint/3000"
15
+ },
16
+ "datasets": {
17
+ "train": {
18
+ "which_dataset": {
19
+ "name": [
20
+ "data.dataset",
21
+ "Sen2_MTC_New_Multi"
22
+ ],
23
+ "args": {
24
+ "data_root": "../pmaa/data",
25
+ "mode": "train"
26
+ }
27
+ },
28
+ "dataloader": {
29
+ "validation_split": 2,
30
+ "args": {
31
+ "batch_size": 8,
32
+ "num_workers": 8,
33
+ "shuffle": true,
34
+ "pin_memory": true,
35
+ "drop_last": true
36
+ },
37
+ "val_args": {
38
+ "batch_size": 1,
39
+ "num_workers": 1,
40
+ "shuffle": false,
41
+ "pin_memory": true,
42
+ "drop_last": false
43
+ }
44
+ }
45
+ },
46
+ "val": {
47
+ "which_dataset": {
48
+ "name": "Sen2_MTC_New_Multi",
49
+ "args": {
50
+ "data_root": "../pmaa/data",
51
+ "mode": "val"
52
+ }
53
+ }
54
+ },
55
+ "test": {
56
+ "which_dataset": {
57
+ "name": "Sen2_MTC_New_Multi",
58
+ "args": {
59
+ "data_root": "../pmaa/data",
60
+ "mode": "test"
61
+ }
62
+ },
63
+ "dataloader": {
64
+ "args": {
65
+ "batch_size": 1,
66
+ "num_workers": 1,
67
+ "pin_memory": true
68
+ }
69
+ }
70
+ }
71
+ },
72
+ "model": {
73
+ "which_model": {
74
+ "name": [
75
+ "models.model",
76
+ "Palette"
77
+ ],
78
+ "args": {
79
+ "sample_num": 8,
80
+ "task": "decloud",
81
+ "ema_scheduler": {
82
+ "ema_start": 1,
83
+ "ema_iter": 1,
84
+ "ema_decay": 0.9999
85
+ },
86
+ "optimizers": [
87
+ {
88
+ "lr": 5e-05,
89
+ "weight_decay": 0
90
+ }
91
+ ]
92
+ }
93
+ },
94
+ "which_networks": [
95
+ {
96
+ "name": [
97
+ "models.network_x0_dpm_solver",
98
+ "Network"
99
+ ],
100
+ "args": {
101
+ "init_type": "kaiming",
102
+ "module_name": "nafnet_concat_no_condskip_nodrop_noparams_splitca_double_encoder_decoder_noCondFFN_middle_fusion",
103
+ "unet": {
104
+ "img_channel": 3,
105
+ "width": 64,
106
+ "middle_blk_num": 1,
107
+ "enc_blk_nums": [1, 1, 1, 1],
108
+ "dec_blk_nums": [1, 1, 1, 1]
109
+ },
110
+ "beta_schedule": {
111
+ "train": {
112
+ "schedule": "linear",
113
+ "n_timestep": 2000,
114
+ "linear_start": 1e-06,
115
+ "linear_end": 0.01
116
+ },
117
+ "test": {
118
+ "schedule": "linear",
119
+ "n_timestep": 1000,
120
+ "linear_start": 0.0001,
121
+ "linear_end": 0.09
122
+ }
123
+ }
124
+ }
125
+ }
126
+ ],
127
+ "which_losses": [
128
+ "mse_loss"
129
+ ],
130
+ "which_metrics": [
131
+ "mae"
132
+ ]
133
+ },
134
+ "train": {
135
+ "n_epoch": 3000,
136
+ "n_iter": 100000000,
137
+ "val_epoch": 1000,
138
+ "save_checkpoint_epoch": 1000,
139
+ "log_iter": 10000,
140
+ "tensorboard": true
141
+ },
142
+ "debug": {
143
+ "val_epoch": 1,
144
+ "save_checkpoint_epoch": 1,
145
+ "log_iter": 10,
146
+ "debug_split": 50
147
+ }
148
+ }
experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/nafnet_double_encoder_splitcaCond.json ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "nafnet_double_encoder_splitcaCond",
3
+ "gpu_ids": [
4
+ 1
5
+ ],
6
+ "seed": -1,
7
+ "finetune_norm": false,
8
+ "path": {
9
+ "base_dir": "experiments",
10
+ "code": "code",
11
+ "tb_logger": "tb_logger",
12
+ "results": "results",
13
+ "checkpoint": "checkpoint",
14
+ "resume_state": "experiments/train_nafnet_double_encoder_splitcaCond_230604_154843/checkpoint/3000"
15
+ },
16
+ "datasets": {
17
+ "train": {
18
+ "which_dataset": {
19
+ "name": [
20
+ "data.dataset",
21
+ "Sen2_MTC_New_Multi"
22
+ ],
23
+ "args": {
24
+ "data_root": "../pmaa/data",
25
+ "mode": "train"
26
+ }
27
+ },
28
+ "dataloader": {
29
+ "validation_split": 2,
30
+ "args": {
31
+ "batch_size": 8,
32
+ "num_workers": 8,
33
+ "shuffle": true,
34
+ "pin_memory": true,
35
+ "drop_last": true
36
+ },
37
+ "val_args": {
38
+ "batch_size": 1,
39
+ "num_workers": 1,
40
+ "shuffle": false,
41
+ "pin_memory": true,
42
+ "drop_last": false
43
+ }
44
+ }
45
+ },
46
+ "val": {
47
+ "which_dataset": {
48
+ "name": "Sen2_MTC_New_Multi",
49
+ "args": {
50
+ "data_root": "../pmaa/data",
51
+ "mode": "val"
52
+ }
53
+ }
54
+ },
55
+ "test": {
56
+ "which_dataset": {
57
+ "name": "Sen2_MTC_New_Multi",
58
+ "args": {
59
+ "data_root": "../pmaa/data",
60
+ "mode": "test"
61
+ }
62
+ },
63
+ "dataloader": {
64
+ "args": {
65
+ "batch_size": 1,
66
+ "num_workers": 1,
67
+ "pin_memory": true
68
+ }
69
+ }
70
+ }
71
+ },
72
+ "model": {
73
+ "which_model": {
74
+ "name": [
75
+ "models.model",
76
+ "Palette"
77
+ ],
78
+ "args": {
79
+ "sample_num": 8,
80
+ "task": "decloud",
81
+ "ema_scheduler": {
82
+ "ema_start": 1,
83
+ "ema_iter": 1,
84
+ "ema_decay": 0.9999
85
+ },
86
+ "optimizers": [
87
+ {
88
+ "lr": 5e-05,
89
+ "weight_decay": 0
90
+ }
91
+ ]
92
+ }
93
+ },
94
+ "which_networks": [
95
+ {
96
+ "name": [
97
+ "models.network_x0_dpm_solver",
98
+ "Network"
99
+ ],
100
+ "args": {
101
+ "init_type": "kaiming",
102
+ "module_name": "nafnet_double_encoder_splitcaCond",
103
+ "unet": {
104
+ "img_channel": 3,
105
+ "width": 64,
106
+ "middle_blk_num": 1,
107
+ "enc_blk_nums": [1, 1, 1, 1],
108
+ "dec_blk_nums": [1, 1, 1, 1]
109
+ },
110
+ "beta_schedule": {
111
+ "train": {
112
+ "schedule": "linear",
113
+ "n_timestep": 2000,
114
+ "linear_start": 1e-06,
115
+ "linear_end": 0.01
116
+ },
117
+ "test": {
118
+ "schedule": "linear",
119
+ "n_timestep": 1000,
120
+ "linear_start": 0.0001,
121
+ "linear_end": 0.09
122
+ }
123
+ }
124
+ }
125
+ }
126
+ ],
127
+ "which_losses": [
128
+ "mse_loss"
129
+ ],
130
+ "which_metrics": [
131
+ "mae"
132
+ ]
133
+ },
134
+ "train": {
135
+ "n_epoch": 3000,
136
+ "n_iter": 100000000,
137
+ "val_epoch": 1000,
138
+ "save_checkpoint_epoch": 1000,
139
+ "log_iter": 10000,
140
+ "tensorboard": true
141
+ },
142
+ "debug": {
143
+ "val_epoch": 1,
144
+ "save_checkpoint_epoch": 1,
145
+ "log_iter": 10,
146
+ "debug_split": 50
147
+ }
148
+ }
experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/nafnet_double_encoder_splitcaCond_splitcaUnet.json ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "nafnet_double_encoder_splitcaCond_splitcaUnet",
3
+ "gpu_ids": [
4
+ 0
5
+ ],
6
+ "seed": -1,
7
+ "finetune_norm": false,
8
+ "path": {
9
+ "base_dir": "experiments",
10
+ "code": "code",
11
+ "tb_logger": "tb_logger",
12
+ "results": "results",
13
+ "checkpoint": "checkpoint",
14
+ "resume_state": "experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_230604_151849/checkpoint/3000"
15
+ },
16
+ "datasets": {
17
+ "train": {
18
+ "which_dataset": {
19
+ "name": [
20
+ "data.dataset",
21
+ "Sen2_MTC_New_Multi"
22
+ ],
23
+ "args": {
24
+ "data_root": "../pmaa/data",
25
+ "mode": "train"
26
+ }
27
+ },
28
+ "dataloader": {
29
+ "validation_split": 2,
30
+ "args": {
31
+ "batch_size": 8,
32
+ "num_workers": 8,
33
+ "shuffle": true,
34
+ "pin_memory": true,
35
+ "drop_last": true
36
+ },
37
+ "val_args": {
38
+ "batch_size": 1,
39
+ "num_workers": 1,
40
+ "shuffle": false,
41
+ "pin_memory": true,
42
+ "drop_last": false
43
+ }
44
+ }
45
+ },
46
+ "val": {
47
+ "which_dataset": {
48
+ "name": "Sen2_MTC_New_Multi",
49
+ "args": {
50
+ "data_root": "../pmaa/data",
51
+ "mode": "val"
52
+ }
53
+ }
54
+ },
55
+ "test": {
56
+ "which_dataset": {
57
+ "name": "Sen2_MTC_New_Multi",
58
+ "args": {
59
+ "data_root": "../pmaa/data",
60
+ "mode": "test"
61
+ }
62
+ },
63
+ "dataloader": {
64
+ "args": {
65
+ "batch_size": 1,
66
+ "num_workers": 1,
67
+ "pin_memory": true
68
+ }
69
+ }
70
+ }
71
+ },
72
+ "model": {
73
+ "which_model": {
74
+ "name": [
75
+ "models.model",
76
+ "Palette"
77
+ ],
78
+ "args": {
79
+ "sample_num": 8,
80
+ "task": "decloud",
81
+ "ema_scheduler": {
82
+ "ema_start": 1,
83
+ "ema_iter": 1,
84
+ "ema_decay": 0.9999
85
+ },
86
+ "optimizers": [
87
+ {
88
+ "lr": 5e-05,
89
+ "weight_decay": 0
90
+ }
91
+ ]
92
+ }
93
+ },
94
+ "which_networks": [
95
+ {
96
+ "name": [
97
+ "models.network_x0_dpm_solver",
98
+ "Network"
99
+ ],
100
+ "args": {
101
+ "init_type": "kaiming",
102
+ "module_name": "nafnet_double_encoder_splitcaCond_splitcaUnet",
103
+ "unet": {
104
+ "img_channel": 3,
105
+ "width": 64,
106
+ "middle_blk_num": 1,
107
+ "enc_blk_nums": [1, 1, 1, 1],
108
+ "dec_blk_nums": [1, 1, 1, 1]
109
+ },
110
+ "beta_schedule": {
111
+ "train": {
112
+ "schedule": "linear",
113
+ "n_timestep": 2000,
114
+ "linear_start": 1e-06,
115
+ "linear_end": 0.01
116
+ },
117
+ "test": {
118
+ "schedule": "linear",
119
+ "n_timestep": 1000,
120
+ "linear_start": 0.0001,
121
+ "linear_end": 0.09
122
+ }
123
+ }
124
+ }
125
+ }
126
+ ],
127
+ "which_losses": [
128
+ "mse_loss"
129
+ ],
130
+ "which_metrics": [
131
+ "mae"
132
+ ]
133
+ },
134
+ "train": {
135
+ "n_epoch": 3000,
136
+ "n_iter": 100000000,
137
+ "val_epoch": 1000,
138
+ "save_checkpoint_epoch": 1000,
139
+ "log_iter": 10000,
140
+ "tensorboard": true
141
+ },
142
+ "debug": {
143
+ "val_epoch": 1,
144
+ "save_checkpoint_epoch": 1,
145
+ "log_iter": 10,
146
+ "debug_split": 50
147
+ }
148
+ }
experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/nafnet_double_encoder_splitcaCond_splitcaUnet_cosine.json ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "nafnet_double_encoder_splitcaCond_splitcaUnet_cosine",
3
+ "gpu_ids": [
4
+ 0
5
+ ],
6
+ "seed": -1,
7
+ "finetune_norm": false,
8
+ "path": {
9
+ "base_dir": "experiments",
10
+ "code": "code",
11
+ "tb_logger": "tb_logger",
12
+ "results": "results",
13
+ "checkpoint": "checkpoint",
14
+ "resume_state": null
15
+ },
16
+ "datasets": {
17
+ "train": {
18
+ "which_dataset": {
19
+ "name": [
20
+ "data.dataset",
21
+ "Sen2_MTC_New_Multi"
22
+ ],
23
+ "args": {
24
+ "data_root": "../pmaa/data",
25
+ "mode": "train"
26
+ }
27
+ },
28
+ "dataloader": {
29
+ "validation_split": 2,
30
+ "args": {
31
+ "batch_size": 8,
32
+ "num_workers": 8,
33
+ "shuffle": true,
34
+ "pin_memory": true,
35
+ "drop_last": true
36
+ },
37
+ "val_args": {
38
+ "batch_size": 1,
39
+ "num_workers": 1,
40
+ "shuffle": false,
41
+ "pin_memory": true,
42
+ "drop_last": false
43
+ }
44
+ }
45
+ },
46
+ "val": {
47
+ "which_dataset": {
48
+ "name": "Sen2_MTC_New_Multi",
49
+ "args": {
50
+ "data_root": "../pmaa/data",
51
+ "mode": "val"
52
+ }
53
+ }
54
+ },
55
+ "test": {
56
+ "which_dataset": {
57
+ "name": "Sen2_MTC_New_Multi",
58
+ "args": {
59
+ "data_root": "../pmaa/data",
60
+ "mode": "test"
61
+ }
62
+ },
63
+ "dataloader": {
64
+ "args": {
65
+ "batch_size": 1,
66
+ "num_workers": 1,
67
+ "pin_memory": true
68
+ }
69
+ }
70
+ }
71
+ },
72
+ "model": {
73
+ "which_model": {
74
+ "name": [
75
+ "models.model",
76
+ "Palette"
77
+ ],
78
+ "args": {
79
+ "sample_num": 8,
80
+ "task": "decloud",
81
+ "ema_scheduler": {
82
+ "ema_start": 1,
83
+ "ema_iter": 1,
84
+ "ema_decay": 0.9999
85
+ },
86
+ "optimizers": [
87
+ {
88
+ "lr": 5e-05,
89
+ "weight_decay": 0
90
+ }
91
+ ]
92
+ }
93
+ },
94
+ "which_networks": [
95
+ {
96
+ "name": [
97
+ "models.network_x0_dpm_solver",
98
+ "Network"
99
+ ],
100
+ "args": {
101
+ "init_type": "kaiming",
102
+ "module_name": "nafnet_double_encoder_splitcaCond_splitcaUnet",
103
+ "unet": {
104
+ "img_channel": 3,
105
+ "width": 64,
106
+ "middle_blk_num": 1,
107
+ "enc_blk_nums": [1, 1, 1, 1],
108
+ "dec_blk_nums": [1, 1, 1, 1]
109
+ },
110
+ "beta_schedule": {
111
+ "train": {
112
+ "schedule": "cosine",
113
+ "n_timestep": 2000,
114
+ "linear_start": 1e-06,
115
+ "linear_end": 0.01
116
+ },
117
+ "test": {
118
+ "schedule": "cosine",
119
+ "n_timestep": 1000,
120
+ "linear_start": 0.0001,
121
+ "linear_end": 0.09
122
+ }
123
+ }
124
+ }
125
+ }
126
+ ],
127
+ "which_losses": [
128
+ "mse_loss"
129
+ ],
130
+ "which_metrics": [
131
+ "mae"
132
+ ]
133
+ },
134
+ "train": {
135
+ "n_epoch": 3000,
136
+ "n_iter": 100000000,
137
+ "val_epoch": 1000,
138
+ "save_checkpoint_epoch": 1000,
139
+ "log_iter": 10000,
140
+ "tensorboard": true
141
+ },
142
+ "debug": {
143
+ "val_epoch": 1,
144
+ "save_checkpoint_epoch": 1,
145
+ "log_iter": 10,
146
+ "debug_split": 50
147
+ }
148
+ }
experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid.json ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid",
3
+ "gpu_ids": [
4
+ 1
5
+ ],
6
+ "seed": -1,
7
+ "finetune_norm": false,
8
+ "path": {
9
+ "base_dir": "experiments",
10
+ "code": "code",
11
+ "tb_logger": "tb_logger",
12
+ "results": "results",
13
+ "checkpoint": "checkpoint",
14
+ "resume_state": null
15
+ },
16
+ "datasets": {
17
+ "train": {
18
+ "which_dataset": {
19
+ "name": [
20
+ "data.dataset",
21
+ "Sen2_MTC_New_Multi"
22
+ ],
23
+ "args": {
24
+ "data_root": "../pmaa/data",
25
+ "mode": "train"
26
+ }
27
+ },
28
+ "dataloader": {
29
+ "validation_split": 2,
30
+ "args": {
31
+ "batch_size": 8,
32
+ "num_workers": 8,
33
+ "shuffle": true,
34
+ "pin_memory": true,
35
+ "drop_last": true
36
+ },
37
+ "val_args": {
38
+ "batch_size": 1,
39
+ "num_workers": 1,
40
+ "shuffle": false,
41
+ "pin_memory": true,
42
+ "drop_last": false
43
+ }
44
+ }
45
+ },
46
+ "val": {
47
+ "which_dataset": {
48
+ "name": "Sen2_MTC_New_Multi",
49
+ "args": {
50
+ "data_root": "../pmaa/data",
51
+ "mode": "val"
52
+ }
53
+ }
54
+ },
55
+ "test": {
56
+ "which_dataset": {
57
+ "name": "Sen2_MTC_New_Multi",
58
+ "args": {
59
+ "data_root": "../pmaa/data",
60
+ "mode": "test"
61
+ }
62
+ },
63
+ "dataloader": {
64
+ "args": {
65
+ "batch_size": 1,
66
+ "num_workers": 1,
67
+ "pin_memory": true
68
+ }
69
+ }
70
+ }
71
+ },
72
+ "model": {
73
+ "which_model": {
74
+ "name": [
75
+ "models.model",
76
+ "Palette"
77
+ ],
78
+ "args": {
79
+ "sample_num": 8,
80
+ "task": "decloud",
81
+ "ema_scheduler": {
82
+ "ema_start": 1,
83
+ "ema_iter": 1,
84
+ "ema_decay": 0.9999
85
+ },
86
+ "optimizers": [
87
+ {
88
+ "lr": 5e-05,
89
+ "weight_decay": 0
90
+ }
91
+ ]
92
+ }
93
+ },
94
+ "which_networks": [
95
+ {
96
+ "name": [
97
+ "models.network_x0_dpm_solver",
98
+ "Network"
99
+ ],
100
+ "args": {
101
+ "init_type": "kaiming",
102
+ "module_name": "nafnet_double_encoder_splitcaCond_splitcaUnet",
103
+ "unet": {
104
+ "img_channel": 3,
105
+ "width": 64,
106
+ "middle_blk_num": 1,
107
+ "enc_blk_nums": [1, 1, 1, 1],
108
+ "dec_blk_nums": [1, 1, 1, 1]
109
+ },
110
+ "beta_schedule": {
111
+ "train": {
112
+ "schedule": "sigmoid",
113
+ "n_timestep": 2000,
114
+ "linear_start": 1e-06,
115
+ "linear_end": 0.01
116
+ },
117
+ "test": {
118
+ "schedule": "sigmoid",
119
+ "n_timestep": 1000,
120
+ "linear_start": 0.0001,
121
+ "linear_end": 0.09
122
+ }
123
+ }
124
+ }
125
+ }
126
+ ],
127
+ "which_losses": [
128
+ "mse_loss"
129
+ ],
130
+ "which_metrics": [
131
+ "mae"
132
+ ]
133
+ },
134
+ "train": {
135
+ "n_epoch": 3000,
136
+ "n_iter": 100000000,
137
+ "val_epoch": 1000,
138
+ "save_checkpoint_epoch": 1000,
139
+ "log_iter": 10000,
140
+ "tensorboard": true
141
+ },
142
+ "debug": {
143
+ "val_epoch": 1,
144
+ "save_checkpoint_epoch": 1,
145
+ "log_iter": 10,
146
+ "debug_split": 50
147
+ }
148
+ }
experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_datan1.json ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_datan1",
3
+ "gpu_ids": [
4
+ 2
5
+ ],
6
+ "seed": -1,
7
+ "finetune_norm": false,
8
+ "path": {
9
+ "base_dir": "experiments",
10
+ "code": "code",
11
+ "tb_logger": "tb_logger",
12
+ "results": "results",
13
+ "checkpoint": "checkpoint",
14
+ "resume_state": null
15
+ },
16
+ "datasets": {
17
+ "train": {
18
+ "which_dataset": {
19
+ "name": [
20
+ "data.dataset",
21
+ "Sen2_MTC_New1"
22
+ ],
23
+ "args": {
24
+ "data_root": "../pmaa/data",
25
+ "mode": "train"
26
+ }
27
+ },
28
+ "dataloader": {
29
+ "validation_split": 2,
30
+ "args": {
31
+ "batch_size": 8,
32
+ "num_workers": 8,
33
+ "shuffle": true,
34
+ "pin_memory": true,
35
+ "drop_last": true
36
+ },
37
+ "val_args": {
38
+ "batch_size": 1,
39
+ "num_workers": 1,
40
+ "shuffle": false,
41
+ "pin_memory": true,
42
+ "drop_last": false
43
+ }
44
+ }
45
+ },
46
+ "val": {
47
+ "which_dataset": {
48
+ "name": "Sen2_MTC_New1",
49
+ "args": {
50
+ "data_root": "../pmaa/data",
51
+ "mode": "val"
52
+ }
53
+ }
54
+ },
55
+ "test": {
56
+ "which_dataset": {
57
+ "name": "Sen2_MTC_New1",
58
+ "args": {
59
+ "data_root": "../pmaa/data",
60
+ "mode": "test"
61
+ }
62
+ },
63
+ "dataloader": {
64
+ "args": {
65
+ "batch_size": 1,
66
+ "num_workers": 1,
67
+ "pin_memory": true
68
+ }
69
+ }
70
+ }
71
+ },
72
+ "model": {
73
+ "which_model": {
74
+ "name": [
75
+ "models.model",
76
+ "Palette"
77
+ ],
78
+ "args": {
79
+ "sample_num": 8,
80
+ "task": "decloud",
81
+ "ema_scheduler": {
82
+ "ema_start": 1,
83
+ "ema_iter": 1,
84
+ "ema_decay": 0.9999
85
+ },
86
+ "optimizers": [
87
+ {
88
+ "lr": 5e-05,
89
+ "weight_decay": 0
90
+ }
91
+ ]
92
+ }
93
+ },
94
+ "which_networks": [
95
+ {
96
+ "name": [
97
+ "models.network_x0_dpm_solver",
98
+ "Network"
99
+ ],
100
+ "args": {
101
+ "init_type": "kaiming",
102
+ "module_name": "nafnet_double_encoder_splitcaCond_splitcaUnet",
103
+ "unet": {
104
+ "img_channel": 3,
105
+ "width": 64,
106
+ "middle_blk_num": 1,
107
+ "enc_blk_nums": [1, 1, 1, 1],
108
+ "dec_blk_nums": [1, 1, 1, 1]
109
+ },
110
+ "beta_schedule": {
111
+ "train": {
112
+ "schedule": "sigmoid",
113
+ "n_timestep": 2000,
114
+ "linear_start": 1e-06,
115
+ "linear_end": 0.01
116
+ },
117
+ "test": {
118
+ "schedule": "sigmoid",
119
+ "n_timestep": 1000,
120
+ "linear_start": 0.0001,
121
+ "linear_end": 0.09
122
+ }
123
+ }
124
+ }
125
+ }
126
+ ],
127
+ "which_losses": [
128
+ "mse_loss"
129
+ ],
130
+ "which_metrics": [
131
+ "mae"
132
+ ]
133
+ },
134
+ "train": {
135
+ "n_epoch": 3000,
136
+ "n_iter": 100000000,
137
+ "val_epoch": 1000,
138
+ "save_checkpoint_epoch": 1000,
139
+ "log_iter": 10000,
140
+ "tensorboard": true
141
+ },
142
+ "debug": {
143
+ "val_epoch": 1,
144
+ "save_checkpoint_epoch": 1,
145
+ "log_iter": 10,
146
+ "debug_split": 50
147
+ }
148
+ }
experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_datan2.json ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_datan2",
3
+ "gpu_ids": [
4
+ 3
5
+ ],
6
+ "seed": -1,
7
+ "finetune_norm": false,
8
+ "path": {
9
+ "base_dir": "experiments",
10
+ "code": "code",
11
+ "tb_logger": "tb_logger",
12
+ "results": "results",
13
+ "checkpoint": "checkpoint",
14
+ "resume_state": null
15
+ },
16
+ "datasets": {
17
+ "train": {
18
+ "which_dataset": {
19
+ "name": [
20
+ "data.dataset",
21
+ "Sen2_MTC_New2"
22
+ ],
23
+ "args": {
24
+ "data_root": "../pmaa/data",
25
+ "mode": "train"
26
+ }
27
+ },
28
+ "dataloader": {
29
+ "validation_split": 2,
30
+ "args": {
31
+ "batch_size": 8,
32
+ "num_workers": 8,
33
+ "shuffle": true,
34
+ "pin_memory": true,
35
+ "drop_last": true
36
+ },
37
+ "val_args": {
38
+ "batch_size": 1,
39
+ "num_workers": 1,
40
+ "shuffle": false,
41
+ "pin_memory": true,
42
+ "drop_last": false
43
+ }
44
+ }
45
+ },
46
+ "val": {
47
+ "which_dataset": {
48
+ "name": "Sen2_MTC_New2",
49
+ "args": {
50
+ "data_root": "../pmaa/data",
51
+ "mode": "val"
52
+ }
53
+ }
54
+ },
55
+ "test": {
56
+ "which_dataset": {
57
+ "name": "Sen2_MTC_New2",
58
+ "args": {
59
+ "data_root": "../pmaa/data",
60
+ "mode": "test"
61
+ }
62
+ },
63
+ "dataloader": {
64
+ "args": {
65
+ "batch_size": 1,
66
+ "num_workers": 1,
67
+ "pin_memory": true
68
+ }
69
+ }
70
+ }
71
+ },
72
+ "model": {
73
+ "which_model": {
74
+ "name": [
75
+ "models.model",
76
+ "Palette"
77
+ ],
78
+ "args": {
79
+ "sample_num": 8,
80
+ "task": "decloud",
81
+ "ema_scheduler": {
82
+ "ema_start": 1,
83
+ "ema_iter": 1,
84
+ "ema_decay": 0.9999
85
+ },
86
+ "optimizers": [
87
+ {
88
+ "lr": 5e-05,
89
+ "weight_decay": 0
90
+ }
91
+ ]
92
+ }
93
+ },
94
+ "which_networks": [
95
+ {
96
+ "name": [
97
+ "models.network_x0_dpm_solver",
98
+ "Network"
99
+ ],
100
+ "args": {
101
+ "init_type": "kaiming",
102
+ "module_name": "nafnet_double_encoder_splitcaCond_splitcaUnet",
103
+ "unet": {
104
+ "img_channel": 3,
105
+ "width": 64,
106
+ "middle_blk_num": 1,
107
+ "enc_blk_nums": [1, 1, 1, 1],
108
+ "dec_blk_nums": [1, 1, 1, 1]
109
+ },
110
+ "beta_schedule": {
111
+ "train": {
112
+ "schedule": "sigmoid",
113
+ "n_timestep": 2000,
114
+ "linear_start": 1e-06,
115
+ "linear_end": 0.01
116
+ },
117
+ "test": {
118
+ "schedule": "sigmoid",
119
+ "n_timestep": 1000,
120
+ "linear_start": 0.0001,
121
+ "linear_end": 0.09
122
+ }
123
+ }
124
+ }
125
+ }
126
+ ],
127
+ "which_losses": [
128
+ "mse_loss"
129
+ ],
130
+ "which_metrics": [
131
+ "mae"
132
+ ]
133
+ },
134
+ "train": {
135
+ "n_epoch": 3000,
136
+ "n_iter": 100000000,
137
+ "val_epoch": 1000,
138
+ "save_checkpoint_epoch": 1000,
139
+ "log_iter": 10000,
140
+ "tensorboard": true
141
+ },
142
+ "debug": {
143
+ "val_epoch": 1,
144
+ "save_checkpoint_epoch": 1,
145
+ "log_iter": 10,
146
+ "debug_split": 50
147
+ }
148
+ }
experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen1.json ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen1",
3
+ "gpu_ids": [
4
+ 1
5
+ ],
6
+ "seed": -1,
7
+ "finetune_norm": false,
8
+ "path": {
9
+ "base_dir": "experiments",
10
+ "code": "code",
11
+ "tb_logger": "tb_logger",
12
+ "results": "results",
13
+ "checkpoint": "checkpoint",
14
+ "resume_state": null
15
+ },
16
+ "datasets": {
17
+ "train": {
18
+ "which_dataset": {
19
+ "name": [
20
+ "data.dataset",
21
+ "Sen2_MTC_New1"
22
+ ],
23
+ "args": {
24
+ "data_root": "../pmaa/data",
25
+ "mode": "train"
26
+ }
27
+ },
28
+ "dataloader": {
29
+ "validation_split": 2,
30
+ "args": {
31
+ "batch_size": 8,
32
+ "num_workers": 8,
33
+ "shuffle": true,
34
+ "pin_memory": true,
35
+ "drop_last": true
36
+ },
37
+ "val_args": {
38
+ "batch_size": 1,
39
+ "num_workers": 1,
40
+ "shuffle": false,
41
+ "pin_memory": true,
42
+ "drop_last": false
43
+ }
44
+ }
45
+ },
46
+ "val": {
47
+ "which_dataset": {
48
+ "name": "Sen2_MTC_New1",
49
+ "args": {
50
+ "data_root": "../pmaa/data",
51
+ "mode": "val"
52
+ }
53
+ }
54
+ },
55
+ "test": {
56
+ "which_dataset": {
57
+ "name": "Sen2_MTC_New1",
58
+ "args": {
59
+ "data_root": "../pmaa/data",
60
+ "mode": "test"
61
+ }
62
+ },
63
+ "dataloader": {
64
+ "args": {
65
+ "batch_size": 1,
66
+ "num_workers": 1,
67
+ "pin_memory": true
68
+ }
69
+ }
70
+ }
71
+ },
72
+ "model": {
73
+ "which_model": {
74
+ "name": [
75
+ "models.model",
76
+ "Palette"
77
+ ],
78
+ "args": {
79
+ "sample_num": 8,
80
+ "task": "decloud",
81
+ "ema_scheduler": {
82
+ "ema_start": 1,
83
+ "ema_iter": 1,
84
+ "ema_decay": 0.9999
85
+ },
86
+ "optimizers": [
87
+ {
88
+ "lr": 5e-05,
89
+ "weight_decay": 0
90
+ }
91
+ ]
92
+ }
93
+ },
94
+ "which_networks": [
95
+ {
96
+ "name": [
97
+ "models.network_noise_dpm_solver",
98
+ "Network"
99
+ ],
100
+ "args": {
101
+ "init_type": "kaiming",
102
+ "module_name": "nafnet_double_encoder_splitcaCond_splitcaUnet",
103
+ "unet": {
104
+ "img_channel": 3,
105
+ "width": 64,
106
+ "middle_blk_num": 1,
107
+ "enc_blk_nums": [1, 1, 1, 1],
108
+ "dec_blk_nums": [1, 1, 1, 1]
109
+ },
110
+ "beta_schedule": {
111
+ "train": {
112
+ "schedule": "sigmoid",
113
+ "n_timestep": 2000,
114
+ "linear_start": 1e-06,
115
+ "linear_end": 0.01
116
+ },
117
+ "test": {
118
+ "schedule": "sigmoid",
119
+ "n_timestep": 1000,
120
+ "linear_start": 0.0001,
121
+ "linear_end": 0.09
122
+ }
123
+ }
124
+ }
125
+ }
126
+ ],
127
+ "which_losses": [
128
+ "mse_loss"
129
+ ],
130
+ "which_metrics": [
131
+ "mae"
132
+ ]
133
+ },
134
+ "train": {
135
+ "n_epoch": 3000,
136
+ "n_iter": 100000000,
137
+ "val_epoch": 1000,
138
+ "save_checkpoint_epoch": 1000,
139
+ "log_iter": 10000,
140
+ "tensorboard": true
141
+ },
142
+ "debug": {
143
+ "val_epoch": 1,
144
+ "save_checkpoint_epoch": 1,
145
+ "log_iter": 10,
146
+ "debug_split": 50
147
+ }
148
+ }
experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen2.json ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen2",
3
+ "gpu_ids": [
4
+ 0
5
+ ],
6
+ "seed": -1,
7
+ "finetune_norm": false,
8
+ "path": {
9
+ "base_dir": "experiments",
10
+ "code": "code",
11
+ "tb_logger": "tb_logger",
12
+ "results": "results",
13
+ "checkpoint": "checkpoint",
14
+ "resume_state": null
15
+ },
16
+ "datasets": {
17
+ "train": {
18
+ "which_dataset": {
19
+ "name": [
20
+ "data.dataset",
21
+ "Sen2_MTC_New2"
22
+ ],
23
+ "args": {
24
+ "data_root": "../pmaa/data",
25
+ "mode": "train"
26
+ }
27
+ },
28
+ "dataloader": {
29
+ "validation_split": 2,
30
+ "args": {
31
+ "batch_size": 8,
32
+ "num_workers": 8,
33
+ "shuffle": true,
34
+ "pin_memory": true,
35
+ "drop_last": true
36
+ },
37
+ "val_args": {
38
+ "batch_size": 1,
39
+ "num_workers": 1,
40
+ "shuffle": false,
41
+ "pin_memory": true,
42
+ "drop_last": false
43
+ }
44
+ }
45
+ },
46
+ "val": {
47
+ "which_dataset": {
48
+ "name": "Sen2_MTC_New2",
49
+ "args": {
50
+ "data_root": "../pmaa/data",
51
+ "mode": "val"
52
+ }
53
+ }
54
+ },
55
+ "test": {
56
+ "which_dataset": {
57
+ "name": "Sen2_MTC_New2",
58
+ "args": {
59
+ "data_root": "../pmaa/data",
60
+ "mode": "test"
61
+ }
62
+ },
63
+ "dataloader": {
64
+ "args": {
65
+ "batch_size": 1,
66
+ "num_workers": 1,
67
+ "pin_memory": true
68
+ }
69
+ }
70
+ }
71
+ },
72
+ "model": {
73
+ "which_model": {
74
+ "name": [
75
+ "models.model",
76
+ "Palette"
77
+ ],
78
+ "args": {
79
+ "sample_num": 8,
80
+ "task": "decloud",
81
+ "ema_scheduler": {
82
+ "ema_start": 1,
83
+ "ema_iter": 1,
84
+ "ema_decay": 0.9999
85
+ },
86
+ "optimizers": [
87
+ {
88
+ "lr": 5e-05,
89
+ "weight_decay": 0
90
+ }
91
+ ]
92
+ }
93
+ },
94
+ "which_networks": [
95
+ {
96
+ "name": [
97
+ "models.network_noise_dpm_solver",
98
+ "Network"
99
+ ],
100
+ "args": {
101
+ "init_type": "kaiming",
102
+ "module_name": "nafnet_double_encoder_splitcaCond_splitcaUnet",
103
+ "unet": {
104
+ "img_channel": 3,
105
+ "width": 64,
106
+ "middle_blk_num": 1,
107
+ "enc_blk_nums": [1, 1, 1, 1],
108
+ "dec_blk_nums": [1, 1, 1, 1]
109
+ },
110
+ "beta_schedule": {
111
+ "train": {
112
+ "schedule": "sigmoid",
113
+ "n_timestep": 2000,
114
+ "linear_start": 1e-06,
115
+ "linear_end": 0.01
116
+ },
117
+ "test": {
118
+ "schedule": "sigmoid",
119
+ "n_timestep": 1000,
120
+ "linear_start": 0.0001,
121
+ "linear_end": 0.09
122
+ }
123
+ }
124
+ }
125
+ }
126
+ ],
127
+ "which_losses": [
128
+ "mse_loss"
129
+ ],
130
+ "which_metrics": [
131
+ "mae"
132
+ ]
133
+ },
134
+ "train": {
135
+ "n_epoch": 3000,
136
+ "n_iter": 100000000,
137
+ "val_epoch": 1000,
138
+ "save_checkpoint_epoch": 1000,
139
+ "log_iter": 10000,
140
+ "tensorboard": true
141
+ },
142
+ "debug": {
143
+ "val_epoch": 1,
144
+ "save_checkpoint_epoch": 1,
145
+ "log_iter": 10,
146
+ "debug_split": 50
147
+ }
148
+ }
experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3.json ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3",
3
+ "gpu_ids": [
4
+ 2
5
+ ],
6
+ "seed": -1,
7
+ "finetune_norm": false,
8
+ "path": {
9
+ "base_dir": "experiments",
10
+ "code": "code",
11
+ "tb_logger": "tb_logger",
12
+ "results": "results",
13
+ "checkpoint": "checkpoint",
14
+ "resume_state": null
15
+ },
16
+ "datasets": {
17
+ "train": {
18
+ "which_dataset": {
19
+ "name": [
20
+ "data.dataset",
21
+ "Sen2_MTC_New_Multi"
22
+ ],
23
+ "args": {
24
+ "data_root": "../pmaa/data",
25
+ "mode": "train"
26
+ }
27
+ },
28
+ "dataloader": {
29
+ "validation_split": 2,
30
+ "args": {
31
+ "batch_size": 8,
32
+ "num_workers": 8,
33
+ "shuffle": true,
34
+ "pin_memory": true,
35
+ "drop_last": true
36
+ },
37
+ "val_args": {
38
+ "batch_size": 1,
39
+ "num_workers": 1,
40
+ "shuffle": false,
41
+ "pin_memory": true,
42
+ "drop_last": false
43
+ }
44
+ }
45
+ },
46
+ "val": {
47
+ "which_dataset": {
48
+ "name": "Sen2_MTC_New_Multi",
49
+ "args": {
50
+ "data_root": "../pmaa/data",
51
+ "mode": "val"
52
+ }
53
+ }
54
+ },
55
+ "test": {
56
+ "which_dataset": {
57
+ "name": "Sen2_MTC_New_Multi",
58
+ "args": {
59
+ "data_root": "../pmaa/data",
60
+ "mode": "test"
61
+ }
62
+ },
63
+ "dataloader": {
64
+ "args": {
65
+ "batch_size": 1,
66
+ "num_workers": 1,
67
+ "pin_memory": true
68
+ }
69
+ }
70
+ }
71
+ },
72
+ "model": {
73
+ "which_model": {
74
+ "name": [
75
+ "models.model",
76
+ "Palette"
77
+ ],
78
+ "args": {
79
+ "sample_num": 8,
80
+ "task": "decloud",
81
+ "ema_scheduler": {
82
+ "ema_start": 1,
83
+ "ema_iter": 1,
84
+ "ema_decay": 0.9999
85
+ },
86
+ "optimizers": [
87
+ {
88
+ "lr": 5e-05,
89
+ "weight_decay": 0
90
+ }
91
+ ]
92
+ }
93
+ },
94
+ "which_networks": [
95
+ {
96
+ "name": [
97
+ "models.network_noise_dpm_solver",
98
+ "Network"
99
+ ],
100
+ "args": {
101
+ "init_type": "kaiming",
102
+ "module_name": "nafnet_double_encoder_splitcaCond_splitcaUnet",
103
+ "unet": {
104
+ "img_channel": 3,
105
+ "width": 64,
106
+ "middle_blk_num": 1,
107
+ "enc_blk_nums": [1, 1, 1, 1],
108
+ "dec_blk_nums": [1, 1, 1, 1]
109
+ },
110
+ "beta_schedule": {
111
+ "train": {
112
+ "schedule": "sigmoid",
113
+ "n_timestep": 2000,
114
+ "linear_start": 1e-06,
115
+ "linear_end": 0.01
116
+ },
117
+ "test": {
118
+ "schedule": "sigmoid",
119
+ "n_timestep": 1000,
120
+ "linear_start": 0.0001,
121
+ "linear_end": 0.09
122
+ }
123
+ }
124
+ }
125
+ }
126
+ ],
127
+ "which_losses": [
128
+ "mse_loss"
129
+ ],
130
+ "which_metrics": [
131
+ "mae"
132
+ ]
133
+ },
134
+ "train": {
135
+ "n_epoch": 3000,
136
+ "n_iter": 100000000,
137
+ "val_epoch": 1000,
138
+ "save_checkpoint_epoch": 1000,
139
+ "log_iter": 10000,
140
+ "tensorboard": true
141
+ },
142
+ "debug": {
143
+ "val_epoch": 1,
144
+ "save_checkpoint_epoch": 1,
145
+ "log_iter": 10,
146
+ "debug_split": 50
147
+ }
148
+ }
experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/nafnet_double_encoder_splitcaUnet.json ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "nafnet_double_encoder_splitcaUnet",
3
+ "gpu_ids": [
4
+ 3
5
+ ],
6
+ "seed": -1,
7
+ "finetune_norm": false,
8
+ "path": {
9
+ "base_dir": "experiments",
10
+ "code": "code",
11
+ "tb_logger": "tb_logger",
12
+ "results": "results",
13
+ "checkpoint": "checkpoint",
14
+ "resume_state": "experiments/train_nafnet_double_encoder_splitcaUnet_230604_154955/checkpoint/3000"
15
+ },
16
+ "datasets": {
17
+ "train": {
18
+ "which_dataset": {
19
+ "name": [
20
+ "data.dataset",
21
+ "Sen2_MTC_New_Multi"
22
+ ],
23
+ "args": {
24
+ "data_root": "../pmaa/data",
25
+ "mode": "train"
26
+ }
27
+ },
28
+ "dataloader": {
29
+ "validation_split": 2,
30
+ "args": {
31
+ "batch_size": 8,
32
+ "num_workers": 8,
33
+ "shuffle": true,
34
+ "pin_memory": true,
35
+ "drop_last": true
36
+ },
37
+ "val_args": {
38
+ "batch_size": 1,
39
+ "num_workers": 1,
40
+ "shuffle": false,
41
+ "pin_memory": true,
42
+ "drop_last": false
43
+ }
44
+ }
45
+ },
46
+ "val": {
47
+ "which_dataset": {
48
+ "name": "Sen2_MTC_New_Multi",
49
+ "args": {
50
+ "data_root": "../pmaa/data",
51
+ "mode": "val"
52
+ }
53
+ }
54
+ },
55
+ "test": {
56
+ "which_dataset": {
57
+ "name": "Sen2_MTC_New_Multi",
58
+ "args": {
59
+ "data_root": "../pmaa/data",
60
+ "mode": "test"
61
+ }
62
+ },
63
+ "dataloader": {
64
+ "args": {
65
+ "batch_size": 1,
66
+ "num_workers": 1,
67
+ "pin_memory": true
68
+ }
69
+ }
70
+ }
71
+ },
72
+ "model": {
73
+ "which_model": {
74
+ "name": [
75
+ "models.model",
76
+ "Palette"
77
+ ],
78
+ "args": {
79
+ "sample_num": 8,
80
+ "task": "decloud",
81
+ "ema_scheduler": {
82
+ "ema_start": 1,
83
+ "ema_iter": 1,
84
+ "ema_decay": 0.9999
85
+ },
86
+ "optimizers": [
87
+ {
88
+ "lr": 5e-05,
89
+ "weight_decay": 0
90
+ }
91
+ ]
92
+ }
93
+ },
94
+ "which_networks": [
95
+ {
96
+ "name": [
97
+ "models.network_x0_dpm_solver",
98
+ "Network"
99
+ ],
100
+ "args": {
101
+ "init_type": "kaiming",
102
+ "module_name": "nafnet_double_encoder_splitcaUnet",
103
+ "unet": {
104
+ "img_channel": 3,
105
+ "width": 64,
106
+ "middle_blk_num": 1,
107
+ "enc_blk_nums": [1, 1, 1, 1],
108
+ "dec_blk_nums": [1, 1, 1, 1]
109
+ },
110
+ "beta_schedule": {
111
+ "train": {
112
+ "schedule": "linear",
113
+ "n_timestep": 2000,
114
+ "linear_start": 1e-06,
115
+ "linear_end": 0.01
116
+ },
117
+ "test": {
118
+ "schedule": "linear",
119
+ "n_timestep": 1000,
120
+ "linear_start": 0.0001,
121
+ "linear_end": 0.09
122
+ }
123
+ }
124
+ }
125
+ }
126
+ ],
127
+ "which_losses": [
128
+ "mse_loss"
129
+ ],
130
+ "which_metrics": [
131
+ "mae"
132
+ ]
133
+ },
134
+ "train": {
135
+ "n_epoch": 3000,
136
+ "n_iter": 100000000,
137
+ "val_epoch": 1000,
138
+ "save_checkpoint_epoch": 1000,
139
+ "log_iter": 10000,
140
+ "tensorboard": true
141
+ },
142
+ "debug": {
143
+ "val_epoch": 1,
144
+ "save_checkpoint_epoch": 1,
145
+ "log_iter": 10,
146
+ "debug_split": 50
147
+ }
148
+ }
experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/nafnet_sum_no_condskip_nodrop_noparams_splitca_double_encoder_decoder_noCondFFN_middle_fusion.json ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "nafnet_sum_no_condskip_nodrop_noparams_splitca_double_encoder_decoder_noCondFFN_middle_fusion",
3
+ "gpu_ids": [
4
+ 1
5
+ ],
6
+ "seed": -1,
7
+ "finetune_norm": false,
8
+ "path": {
9
+ "base_dir": "experiments",
10
+ "code": "code",
11
+ "tb_logger": "tb_logger",
12
+ "results": "results",
13
+ "checkpoint": "checkpoint",
14
+ "resume_state": "experiments/train_nafnet_sum_no_condskip_nodrop_noparams_splitca_double_encoder_decoder_noCondFFN_middle_fusion_230531_025339/checkpoint/3000"
15
+ },
16
+ "datasets": {
17
+ "train": {
18
+ "which_dataset": {
19
+ "name": [
20
+ "data.dataset",
21
+ "Sen2_MTC_New_Multi"
22
+ ],
23
+ "args": {
24
+ "data_root": "../pmaa/data",
25
+ "mode": "train"
26
+ }
27
+ },
28
+ "dataloader": {
29
+ "validation_split": 2,
30
+ "args": {
31
+ "batch_size": 8,
32
+ "num_workers": 8,
33
+ "shuffle": true,
34
+ "pin_memory": true,
35
+ "drop_last": true
36
+ },
37
+ "val_args": {
38
+ "batch_size": 1,
39
+ "num_workers": 1,
40
+ "shuffle": false,
41
+ "pin_memory": true,
42
+ "drop_last": false
43
+ }
44
+ }
45
+ },
46
+ "val": {
47
+ "which_dataset": {
48
+ "name": "Sen2_MTC_New_Multi",
49
+ "args": {
50
+ "data_root": "../pmaa/data",
51
+ "mode": "val"
52
+ }
53
+ }
54
+ },
55
+ "test": {
56
+ "which_dataset": {
57
+ "name": "Sen2_MTC_New_Multi",
58
+ "args": {
59
+ "data_root": "../pmaa/data",
60
+ "mode": "test"
61
+ }
62
+ },
63
+ "dataloader": {
64
+ "args": {
65
+ "batch_size": 1,
66
+ "num_workers": 1,
67
+ "pin_memory": true
68
+ }
69
+ }
70
+ }
71
+ },
72
+ "model": {
73
+ "which_model": {
74
+ "name": [
75
+ "models.model",
76
+ "Palette"
77
+ ],
78
+ "args": {
79
+ "sample_num": 8,
80
+ "task": "decloud",
81
+ "ema_scheduler": {
82
+ "ema_start": 1,
83
+ "ema_iter": 1,
84
+ "ema_decay": 0.9999
85
+ },
86
+ "optimizers": [
87
+ {
88
+ "lr": 5e-05,
89
+ "weight_decay": 0
90
+ }
91
+ ]
92
+ }
93
+ },
94
+ "which_networks": [
95
+ {
96
+ "name": [
97
+ "models.network_x0_dpm_solver",
98
+ "Network"
99
+ ],
100
+ "args": {
101
+ "init_type": "kaiming",
102
+ "module_name": "nafnet_sum_no_condskip_nodrop_noparams_splitca_double_encoder_decoder_noCondFFN_middle_fusion",
103
+ "unet": {
104
+ "img_channel": 3,
105
+ "width": 64,
106
+ "middle_blk_num": 1,
107
+ "enc_blk_nums": [1, 1, 1, 1],
108
+ "dec_blk_nums": [1, 1, 1, 1]
109
+ },
110
+ "beta_schedule": {
111
+ "train": {
112
+ "schedule": "linear",
113
+ "n_timestep": 2000,
114
+ "linear_start": 1e-06,
115
+ "linear_end": 0.01
116
+ },
117
+ "test": {
118
+ "schedule": "linear",
119
+ "n_timestep": 1000,
120
+ "linear_start": 0.0001,
121
+ "linear_end": 0.09
122
+ }
123
+ }
124
+ }
125
+ }
126
+ ],
127
+ "which_losses": [
128
+ "mse_loss"
129
+ ],
130
+ "which_metrics": [
131
+ "mae"
132
+ ]
133
+ },
134
+ "train": {
135
+ "n_epoch": 3000,
136
+ "n_iter": 100000000,
137
+ "val_epoch": 1000,
138
+ "save_checkpoint_epoch": 1000,
139
+ "log_iter": 10000,
140
+ "tensorboard": true
141
+ },
142
+ "debug": {
143
+ "val_epoch": 1,
144
+ "save_checkpoint_epoch": 1,
145
+ "log_iter": 10,
146
+ "debug_split": 50
147
+ }
148
+ }
experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/ours_4bs1_multi_x0.json ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "ours_multi_4bs1_x0", // experiments name
3
+ "gpu_ids": [0, 1, 2, 3], // gpu ids list, default is single 0
4
+ "seed" : -1, // random seed, seed <0 represents randomization not used
5
+ "finetune_norm": false, // find the parameters to optimize
6
+
7
+ "path": { //set every part file path
8
+ "base_dir": "experiments", // base path for all log except resume_state
9
+ "code": "code", // code backup
10
+ "tb_logger": "tb_logger", // path of tensorboard logger
11
+ "results": "results",
12
+ "checkpoint": "checkpoint",
13
+ // "resume_state": "experiments/inpainting_places2_220413_143231/checkpoint/25"
14
+ "resume_state": null // ex: 100, loading .state and .pth from given epoch and iteration
15
+ },
16
+
17
+ "datasets": { // train or test
18
+ "train": {
19
+ "which_dataset": { // import designated dataset using arguments
20
+ "name": ["data.dataset", "Sen2_MTC_New_Multi"], // import Dataset() class / function(not recommend) from data.dataset.py (default is [data.dataset.py])
21
+ "args":{ // arguments to initialize dataset
22
+ "data_root": "../pmaa/data",
23
+ "mode": "train"
24
+ }
25
+ },
26
+ "dataloader":{
27
+ "validation_split": 2, // percent or number ## 這裡沒有生效(因為我們自己的數據集有專門劃分的驗證集)
28
+ "args":{ // arguments to initialize train_dataloader
29
+ "batch_size": 1, // batch size in each gpu
30
+ "num_workers": 1,
31
+ "shuffle": true,
32
+ "pin_memory": true,
33
+ "drop_last": true
34
+ },
35
+ "val_args":{ // arguments to initialize valid_dataloader, will overwrite the parameters in train_dataloader
36
+ "batch_size": 1, // batch size in each gpu
37
+ "num_workers": 4,
38
+ "shuffle": false,
39
+ "pin_memory": true,
40
+ "drop_last": false
41
+ }
42
+ }
43
+ },
44
+ "val": {
45
+ "which_dataset": {
46
+ "name": "Sen2_MTC_New_Multi", // import Dataset() class / function(not recommend) from default file
47
+ "args":{
48
+ "data_root": "../pmaa/data",
49
+ "mode": "val"
50
+ }
51
+ }
52
+ },
53
+ "test": {
54
+ "which_dataset": {
55
+ "name": "Sen2_MTC_New_Multi", // import Dataset() class / function(not recommend) from default file
56
+ "args":{
57
+ "data_root": "../pmaa/data",
58
+ "mode": "test"
59
+ }
60
+ },
61
+ "dataloader":{
62
+ "args":{
63
+ "batch_size": 8,
64
+ "num_workers": 8,
65
+ "pin_memory": true
66
+ }
67
+ }
68
+ }
69
+ },
70
+
71
+ "model": { // networks/metrics/losses/optimizers/lr_schedulers is a list and model is a dict
72
+ "which_model": { // import designated model(trainer) using arguments
73
+ "name": ["models.model", "Palette"], // import Model() class / function(not recommend) from models.model.py (default is [models.model.py])
74
+ "args": {
75
+ "sample_num": 8, // process of each image
76
+ "task": "decloud",
77
+ "ema_scheduler": {
78
+ "ema_start": 1,
79
+ "ema_iter": 1,
80
+ "ema_decay": 0.9999
81
+ },
82
+ "optimizers": [
83
+ { "lr": 5e-5, "weight_decay": 0}
84
+ ]
85
+ }
86
+ },
87
+ "which_networks": [ // import designated list of networks using arguments
88
+ {
89
+ "name": ["models.network_x0", "Network"], // import Network() class / function(not recommend) from default file (default is [models/network.py])
90
+ "args": { // arguments to initialize network
91
+ "init_type": "kaiming", // method can be [normal | xavier| xavier_uniform | kaiming | orthogonal], default is kaiming
92
+ "module_name": "ours", // sr3 | guided_diffusion | ours
93
+ "unet": {
94
+ "inp_channels": 12,
95
+ "out_channels": 3,
96
+ "encoder_dims": [64, 128, 256, 512],
97
+ "decoder_dims": [512, 256, 128, 64],
98
+ "encoder_blocks": [1, 1, 1, 1],
99
+ "decoder_blocks": [1, 1, 1, 1],
100
+ "drop_path_rate": 0.1,
101
+ "norm_type": "ln",
102
+ "act_type": "silu"
103
+ },
104
+ "beta_schedule": {
105
+ "train": {
106
+ "schedule": "linear",
107
+ "n_timestep": 2000,
108
+ // "n_timestep": 5, // debug
109
+ "linear_start": 1e-6,
110
+ "linear_end": 0.01
111
+ },
112
+ "test": {
113
+ "schedule": "linear",
114
+ "n_timestep": 1000,
115
+ "linear_start": 1e-4,
116
+ "linear_end": 0.09
117
+ }
118
+ }
119
+ }
120
+ }
121
+ ],
122
+ "which_losses": [ // import designated list of losses without arguments
123
+ "mse_loss" // import mse_loss() function/class from default file (default is [models/losses.py]), equivalent to { "name": "mse_loss", "args":{}}
124
+ ],
125
+ "which_metrics": [ // import designated list of metrics without arguments
126
+ "mae" // import mae() function/class from default file (default is [models/metrics.py]), equivalent to { "name": "mae", "args":{}}
127
+ ]
128
+ },
129
+
130
+ "train": { // arguments for basic training
131
+ "n_epoch": 1e8, // max epochs, not limited now
132
+ "n_iter": 1e8, // max interations
133
+ "val_epoch": 5, // valdation every specified number of epochs
134
+ "save_checkpoint_epoch": 100,
135
+ "log_iter": 1e4, // log every specified number of iterations
136
+ "tensorboard" : true // tensorboardX enable
137
+ },
138
+
139
+ "debug": { // arguments in debug mode, which will replace arguments in train
140
+ "val_epoch": 1,
141
+ "save_checkpoint_epoch": 1,
142
+ "log_iter": 10,
143
+ "debug_split": 50 // percent or number, change the size of dataloder to debug_split.
144
+ }
145
+ }
experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/ours_down4_ca_4bs2_multi_x0.json ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "ours_down4_ca_4bs2_multi_x0", // experiments name
3
+ "gpu_ids": [0, 1, 2, 3], // gpu ids list, default is single 0
4
+ "seed" : -1, // random seed, seed <0 represents randomization not used
5
+ "finetune_norm": false, // find the parameters to optimize
6
+
7
+ "path": { //set every part file path
8
+ "base_dir": "experiments", // base path for all log except resume_state
9
+ "code": "code", // code backup
10
+ "tb_logger": "tb_logger", // path of tensorboard logger
11
+ "results": "results",
12
+ "checkpoint": "checkpoint",
13
+ // "resume_state": "experiments/inpainting_places2_220413_143231/checkpoint/25"
14
+ "resume_state": null // ex: 100, loading .state and .pth from given epoch and iteration
15
+ },
16
+
17
+ "datasets": { // train or test
18
+ "train": {
19
+ "which_dataset": { // import designated dataset using arguments
20
+ "name": ["data.dataset", "Sen2_MTC_New_Multi"], // import Dataset() class / function(not recommend) from data.dataset.py (default is [data.dataset.py])
21
+ "args":{ // arguments to initialize dataset
22
+ "data_root": "../pmaa/data",
23
+ "mode": "train"
24
+ }
25
+ },
26
+ "dataloader":{
27
+ "validation_split": 2, // percent or number ## 這裡沒有生效(因為我們自己的數據集有專門劃分的驗證集)
28
+ "args":{ // arguments to initialize train_dataloader
29
+ "batch_size": 2, // batch size in each gpu
30
+ "num_workers": 4,
31
+ "shuffle": true,
32
+ "pin_memory": true,
33
+ "drop_last": true
34
+ },
35
+ "val_args":{ // arguments to initialize valid_dataloader, will overwrite the parameters in train_dataloader
36
+ "batch_size": 1, // batch size in each gpu
37
+ "num_workers": 4,
38
+ "shuffle": false,
39
+ "pin_memory": true,
40
+ "drop_last": false
41
+ }
42
+ }
43
+ },
44
+ "val": {
45
+ "which_dataset": {
46
+ "name": "Sen2_MTC_New_Multi", // import Dataset() class / function(not recommend) from default file
47
+ "args":{
48
+ "data_root": "../pmaa/data",
49
+ "mode": "val"
50
+ }
51
+ }
52
+ },
53
+ "test": {
54
+ "which_dataset": {
55
+ "name": "Sen2_MTC_New_Multi", // import Dataset() class / function(not recommend) from default file
56
+ "args":{
57
+ "data_root": "../pmaa/data",
58
+ "mode": "test"
59
+ }
60
+ },
61
+ "dataloader":{
62
+ "args":{
63
+ "batch_size": 8,
64
+ "num_workers": 8,
65
+ "pin_memory": true
66
+ }
67
+ }
68
+ }
69
+ },
70
+
71
+ "model": { // networks/metrics/losses/optimizers/lr_schedulers is a list and model is a dict
72
+ "which_model": { // import designated model(trainer) using arguments
73
+ "name": ["models.model", "Palette"], // import Model() class / function(not recommend) from models.model.py (default is [models.model.py])
74
+ "args": {
75
+ "sample_num": 8, // process of each image
76
+ "task": "decloud",
77
+ "ema_scheduler": {
78
+ "ema_start": 1,
79
+ "ema_iter": 1,
80
+ "ema_decay": 0.9999
81
+ },
82
+ "optimizers": [
83
+ { "lr": 5e-5, "weight_decay": 0}
84
+ ]
85
+ }
86
+ },
87
+ "which_networks": [ // import designated list of networks using arguments
88
+ {
89
+ "name": ["models.network_x0_dpm_solver", "Network"], // import Network() class / function(not recommend) from default file (default is [models/network.py])
90
+ "args": { // arguments to initialize network
91
+ "init_type": "kaiming", // method can be [normal | xavier| xavier_uniform | kaiming | orthogonal], default is kaiming
92
+ "module_name": "ours_down4_ca", // sr3 | guided_diffusion | ours | ours_down4_ca
93
+ "unet": {
94
+ "inp_channels": 12,
95
+ "out_channels": 3,
96
+ "encoder_dims": [64, 128, 256, 512, 1024],
97
+ "decoder_dims": [1024, 512, 256, 128, 64],
98
+ "encoder_blocks": [1, 1, 1, 1, 1],
99
+ "decoder_blocks": [1, 1, 1, 1, 1],
100
+ "drop_path_rate": 0.1,
101
+ "norm_type": "ln",
102
+ "act_type": "silu"
103
+ },
104
+ "beta_schedule": {
105
+ "train": {
106
+ "schedule": "linear",
107
+ "n_timestep": 2000,
108
+ // "n_timestep": 5, // debug
109
+ "linear_start": 1e-6,
110
+ "linear_end": 0.01
111
+ },
112
+ "test": {
113
+ "schedule": "linear",
114
+ "n_timestep": 1000,
115
+ "linear_start": 1e-4,
116
+ "linear_end": 0.09
117
+ }
118
+ }
119
+ }
120
+ }
121
+ ],
122
+ "which_losses": [ // import designated list of losses without arguments
123
+ "mse_loss" // import mse_loss() function/class from default file (default is [models/losses.py]), equivalent to { "name": "mse_loss", "args":{}}
124
+ ],
125
+ "which_metrics": [ // import designated list of metrics without arguments
126
+ "mae" // import mae() function/class from default file (default is [models/metrics.py]), equivalent to { "name": "mae", "args":{}}
127
+ ]
128
+ },
129
+
130
+ "train": { // arguments for basic training
131
+ "n_epoch": 5000, // max epochs, not limited now
132
+ "n_iter": 1e8, // max interations
133
+ "val_epoch": 100, // valdation every specified number of epochs
134
+ "save_checkpoint_epoch": 500,
135
+ "log_iter": 1e4, // log every specified number of iterations
136
+ "tensorboard" : false // tensorboardX enable
137
+ },
138
+
139
+ "debug": { // arguments in debug mode, which will replace arguments in train
140
+ "val_epoch": 50,
141
+ "save_checkpoint_epoch": 500,
142
+ "log_iter": 10,
143
+ "debug_split": 50 // percent or number, change the size of dataloder to debug_split.
144
+ }
145
+ }
experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/ours_multi_x0.json ADDED
@@ -0,0 +1,182 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "palette_multi_bs_4_tanh_x0", // experiments name
3
+ <<<<<<< HEAD
4
+ "gpu_ids": [0, 1, 2, 3], // gpu ids list, default is single 0
5
+ =======
6
+ "gpu_ids": [2], // gpu ids list, default is single 0
7
+ >>>>>>> a13ebef0541ec6fe26f52d5598a109d848a51b9c
8
+ "seed" : -1, // random seed, seed <0 represents randomization not used
9
+ "finetune_norm": false, // find the parameters to optimize
10
+
11
+ "path": { //set every part file path
12
+ "base_dir": "experiments", // base path for all log except resume_state
13
+ "code": "code", // code backup
14
+ "tb_logger": "tb_logger", // path of tensorboard logger
15
+ "results": "results",
16
+ "checkpoint": "checkpoint",
17
+ // "resume_state": "experiments/inpainting_places2_220413_143231/checkpoint/25"
18
+ <<<<<<< HEAD
19
+ "resume_state": "experiments/train_palette_multi_bs_4_tanh_x0_230402_080308/checkpoint/1520" // ex: 100, loading .state and .pth from given epoch and iteration
20
+ =======
21
+ "resume_state": null // ex: 100, loading .state and .pth from given epoch and iteration
22
+ >>>>>>> a13ebef0541ec6fe26f52d5598a109d848a51b9c
23
+ },
24
+
25
+ "datasets": { // train or test
26
+ "train": {
27
+ "which_dataset": { // import designated dataset using arguments
28
+ "name": ["data.dataset", "Sen2_MTC_New_Multi"], // import Dataset() class / function(not recommend) from data.dataset.py (default is [data.dataset.py])
29
+ "args":{ // arguments to initialize dataset
30
+ <<<<<<< HEAD
31
+ "data_root": "../pmaa/data",
32
+ =======
33
+ "data_root": "datasets",
34
+ >>>>>>> a13ebef0541ec6fe26f52d5598a109d848a51b9c
35
+ "mode": "train"
36
+ }
37
+ },
38
+ "dataloader":{
39
+ "validation_split": 2, // percent or number ## 這裡沒有生效(因為我們自己的數據集有專門劃分的驗證集)
40
+ "args":{ // arguments to initialize train_dataloader
41
+ <<<<<<< HEAD
42
+ "batch_size": 8, // batch size in each gpu
43
+ "num_workers": 8,
44
+ =======
45
+ "batch_size": 4, // batch size in each gpu
46
+ "num_workers": 4,
47
+ >>>>>>> a13ebef0541ec6fe26f52d5598a109d848a51b9c
48
+ "shuffle": true,
49
+ "pin_memory": true,
50
+ "drop_last": true
51
+ },
52
+ "val_args":{ // arguments to initialize valid_dataloader, will overwrite the parameters in train_dataloader
53
+ "batch_size": 1, // batch size in each gpu
54
+ "num_workers": 4,
55
+ "shuffle": false,
56
+ "pin_memory": true,
57
+ "drop_last": false
58
+ }
59
+ }
60
+ },
61
+ "val": {
62
+ "which_dataset": {
63
+ "name": "Sen2_MTC_New_Multi", // import Dataset() class / function(not recommend) from default file
64
+ "args":{
65
+ <<<<<<< HEAD
66
+ "data_root": "../pmaa/data",
67
+ =======
68
+ "data_root": "datasets",
69
+ >>>>>>> a13ebef0541ec6fe26f52d5598a109d848a51b9c
70
+ "mode": "val"
71
+ }
72
+ }
73
+ },
74
+ "test": {
75
+ "which_dataset": {
76
+ "name": "Sen2_MTC_New_Multi", // import Dataset() class / function(not recommend) from default file
77
+ "args":{
78
+ <<<<<<< HEAD
79
+ "data_root": "../pmaa/data",
80
+ =======
81
+ "data_root": "datasets",
82
+ >>>>>>> a13ebef0541ec6fe26f52d5598a109d848a51b9c
83
+ "mode": "test"
84
+ }
85
+ },
86
+ "dataloader":{
87
+ "args":{
88
+ "batch_size": 8,
89
+ <<<<<<< HEAD
90
+ "num_workers": 8,
91
+ =======
92
+ "num_workers": 4,
93
+ >>>>>>> a13ebef0541ec6fe26f52d5598a109d848a51b9c
94
+ "pin_memory": true
95
+ }
96
+ }
97
+ }
98
+ },
99
+
100
+ "model": { // networks/metrics/losses/optimizers/lr_schedulers is a list and model is a dict
101
+ "which_model": { // import designated model(trainer) using arguments
102
+ "name": ["models.model", "Palette"], // import Model() class / function(not recommend) from models.model.py (default is [models.model.py])
103
+ "args": {
104
+ "sample_num": 8, // process of each image
105
+ "task": "decloud",
106
+ "ema_scheduler": {
107
+ "ema_start": 1,
108
+ "ema_iter": 1,
109
+ "ema_decay": 0.9999
110
+ },
111
+ "optimizers": [
112
+ <<<<<<< HEAD
113
+ { "lr": 0.0002, "weight_decay": 0}
114
+ =======
115
+ { "lr": 5e-5, "weight_decay": 0}
116
+ >>>>>>> a13ebef0541ec6fe26f52d5598a109d848a51b9c
117
+ ]
118
+ }
119
+ },
120
+ "which_networks": [ // import designated list of networks using arguments
121
+ {
122
+ "name": ["models.network_x0", "Network"], // import Network() class / function(not recommend) from default file (default is [models/network.py])
123
+ "args": { // arguments to initialize network
124
+ "init_type": "kaiming", // method can be [normal | xavier| xavier_uniform | kaiming | orthogonal], default is kaiming
125
+ "module_name": "ours", // sr3 | guided_diffusion | ours
126
+ "unet": {
127
+ "inp_channels": 12,
128
+ "out_channels": 3,
129
+ "encoder_dims": [64, 128, 256, 512],
130
+ "decoder_dims": [512, 256, 128, 64],
131
+ "encoder_blocks": [1, 1, 1, 1],
132
+ "decoder_blocks": [1, 1, 1, 1],
133
+ "drop_path_rate": 0.1,
134
+ "norm_type": "ln",
135
+ "act_type": "silu"
136
+ },
137
+ "beta_schedule": {
138
+ "train": {
139
+ "schedule": "linear",
140
+ "n_timestep": 2000,
141
+ // "n_timestep": 5, // debug
142
+ "linear_start": 1e-6,
143
+ "linear_end": 0.01
144
+ },
145
+ "test": {
146
+ "schedule": "linear",
147
+ "n_timestep": 1000,
148
+ "linear_start": 1e-4,
149
+ "linear_end": 0.09
150
+ }
151
+ }
152
+ }
153
+ }
154
+ ],
155
+ "which_losses": [ // import designated list of losses without arguments
156
+ "mse_loss" // import mse_loss() function/class from default file (default is [models/losses.py]), equivalent to { "name": "mse_loss", "args":{}}
157
+ ],
158
+ "which_metrics": [ // import designated list of metrics without arguments
159
+ "mae" // import mae() function/class from default file (default is [models/metrics.py]), equivalent to { "name": "mae", "args":{}}
160
+ ]
161
+ },
162
+
163
+ "train": { // arguments for basic training
164
+ "n_epoch": 1e8, // max epochs, not limited now
165
+ "n_iter": 1e8, // max interations
166
+ "val_epoch": 5, // valdation every specified number of epochs
167
+ <<<<<<< HEAD
168
+ "save_checkpoint_epoch": 100,
169
+ =======
170
+ "save_checkpoint_epoch": 10,
171
+ >>>>>>> a13ebef0541ec6fe26f52d5598a109d848a51b9c
172
+ "log_iter": 1e4, // log every specified number of iterations
173
+ "tensorboard" : true // tensorboardX enable
174
+ },
175
+
176
+ "debug": { // arguments in debug mode, which will replace arguments in train
177
+ "val_epoch": 1,
178
+ "save_checkpoint_epoch": 1,
179
+ "log_iter": 10,
180
+ "debug_split": 50 // percent or number, change the size of dataloder to debug_split.
181
+ }
182
+ }
experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/palette_1xb8_e5000_dpms_s20_no_noise.json ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "palette_1xb8_e5000_dpms_s20_no_noise",
3
+ "gpu_ids": [
4
+ 0
5
+ ],
6
+ "seed": -1,
7
+ "finetune_norm": false,
8
+ "path": {
9
+ "base_dir": "experiments",
10
+ "code": "code",
11
+ "tb_logger": "tb_logger",
12
+ "results": "results",
13
+ "checkpoint": "checkpoint",
14
+ "resume_state": null
15
+ },
16
+ "datasets": {
17
+ "train": {
18
+ "which_dataset": {
19
+ "name": [
20
+ "data.dataset",
21
+ "Sen2_MTC_New_Multi"
22
+ ],
23
+ "args": {
24
+ "data_root": "datasets",
25
+ "mode": "train"
26
+ }
27
+ },
28
+ "dataloader": {
29
+ "validation_split": 2,
30
+ "args": {
31
+ "batch_size": 8,
32
+ "num_workers": 8,
33
+ "shuffle": true,
34
+ "pin_memory": true,
35
+ "drop_last": true
36
+ },
37
+ "val_args": {
38
+ "batch_size": 1,
39
+ "num_workers": 8,
40
+ "shuffle": false,
41
+ "pin_memory": true,
42
+ "drop_last": false
43
+ }
44
+ }
45
+ },
46
+ "val": {
47
+ "which_dataset": {
48
+ "name": "Sen2_MTC_New_Multi",
49
+ "args": {
50
+ "data_root": "datasets",
51
+ "mode": "val"
52
+ }
53
+ }
54
+ },
55
+ "test": {
56
+ "which_dataset": {
57
+ "name": "Sen2_MTC_New_Multi",
58
+ "args": {
59
+ "data_root": "datasets",
60
+ "mode": "test"
61
+ }
62
+ },
63
+ "dataloader": {
64
+ "args": {
65
+ "batch_size": 8,
66
+ "num_workers": 8,
67
+ "pin_memory": true
68
+ }
69
+ }
70
+ }
71
+ },
72
+ "model": {
73
+ "which_model": {
74
+ "name": [
75
+ "models.model",
76
+ "Palette"
77
+ ],
78
+ "args": {
79
+ "sample_num": 8,
80
+ "task": "decloud",
81
+ "ema_scheduler": {
82
+ "ema_start": 1,
83
+ "ema_iter": 1,
84
+ "ema_decay": 0.9999
85
+ },
86
+ "optimizers": [
87
+ {
88
+ "lr": 5e-05,
89
+ "weight_decay": 0
90
+ }
91
+ ]
92
+ }
93
+ },
94
+ "which_networks": [
95
+ {
96
+ "name": [
97
+ "models.network_x0_dpm_solver_no_noise",
98
+ "Network"
99
+ ],
100
+ "args": {
101
+ "init_type": "kaiming",
102
+ "module_name": "tanh",
103
+ "unet": {
104
+ "in_channel": 9,
105
+ "out_channel": 3,
106
+ "inner_channel": 64,
107
+ "channel_mults": [
108
+ 1,
109
+ 2,
110
+ 4,
111
+ 8
112
+ ],
113
+ "attn_res": [
114
+ 16
115
+ ],
116
+ "num_head_channels": 32,
117
+ "res_blocks": 2,
118
+ "dropout": 0.2,
119
+ "image_size": 256
120
+ },
121
+ "beta_schedule": {
122
+ "train": {
123
+ "schedule": "linear",
124
+ "n_timestep": 2000,
125
+ "linear_start": 1e-06,
126
+ "linear_end": 0.01
127
+ },
128
+ "test": {
129
+ "schedule": "linear",
130
+ "n_timestep": 1000,
131
+ "linear_start": 0.0001,
132
+ "linear_end": 0.09
133
+ }
134
+ }
135
+ }
136
+ }
137
+ ],
138
+ "which_losses": [
139
+ "mse_loss"
140
+ ],
141
+ "which_metrics": [
142
+ "mae"
143
+ ]
144
+ },
145
+ "train": {
146
+ "n_epoch": 5000,
147
+ "n_iter": 100000000,
148
+ "val_epoch": 10,
149
+ "save_checkpoint_epoch": 10,
150
+ "log_iter": 10000,
151
+ "tensorboard": false
152
+ },
153
+ "debug": {
154
+ "val_epoch": 1,
155
+ "save_checkpoint_epoch": 1,
156
+ "log_iter": 10,
157
+ "debug_split": 50
158
+ }
159
+ }
experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/palette_1xb8_e5000_dpms_s20_y_t-1.json ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "palette_1xb8_e5000_dpms_s20_y_t-1",
3
+ "gpu_ids": [
4
+ 0
5
+ ],
6
+ "seed": -1,
7
+ "finetune_norm": false,
8
+ "path": {
9
+ "base_dir": "experiments",
10
+ "code": "code",
11
+ "tb_logger": "tb_logger",
12
+ "results": "results",
13
+ "checkpoint": "checkpoint",
14
+ "resume_state": null
15
+ },
16
+ "datasets": {
17
+ "train": {
18
+ "which_dataset": {
19
+ "name": [
20
+ "data.dataset",
21
+ "Sen2_MTC_New_Multi"
22
+ ],
23
+ "args": {
24
+ "data_root": "datasets",
25
+ "mode": "train"
26
+ }
27
+ },
28
+ "dataloader": {
29
+ "validation_split": 2,
30
+ "args": {
31
+ "batch_size": 8,
32
+ "num_workers": 8,
33
+ "shuffle": true,
34
+ "pin_memory": true,
35
+ "drop_last": true
36
+ },
37
+ "val_args": {
38
+ "batch_size": 1,
39
+ "num_workers": 8,
40
+ "shuffle": false,
41
+ "pin_memory": true,
42
+ "drop_last": false
43
+ }
44
+ }
45
+ },
46
+ "val": {
47
+ "which_dataset": {
48
+ "name": "Sen2_MTC_New_Multi",
49
+ "args": {
50
+ "data_root": "datasets",
51
+ "mode": "val"
52
+ }
53
+ }
54
+ },
55
+ "test": {
56
+ "which_dataset": {
57
+ "name": "Sen2_MTC_New_Multi",
58
+ "args": {
59
+ "data_root": "datasets",
60
+ "mode": "test"
61
+ }
62
+ },
63
+ "dataloader": {
64
+ "args": {
65
+ "batch_size": 8,
66
+ "num_workers": 8,
67
+ "pin_memory": true
68
+ }
69
+ }
70
+ }
71
+ },
72
+ "model": {
73
+ "which_model": {
74
+ "name": [
75
+ "models.model",
76
+ "Palette"
77
+ ],
78
+ "args": {
79
+ "sample_num": 8,
80
+ "task": "decloud",
81
+ "ema_scheduler": {
82
+ "ema_start": 1,
83
+ "ema_iter": 1,
84
+ "ema_decay": 0.9999
85
+ },
86
+ "optimizers": [
87
+ {
88
+ "lr": 5e-05,
89
+ "weight_decay": 0
90
+ }
91
+ ]
92
+ }
93
+ },
94
+ "which_networks": [
95
+ {
96
+ "name": [
97
+ "models.network_x0_dpm_solver_y_t-1",
98
+ "Network"
99
+ ],
100
+ "args": {
101
+ "init_type": "kaiming",
102
+ "module_name": "tanh",
103
+ "unet": {
104
+ "in_channel": 12,
105
+ "out_channel": 3,
106
+ "inner_channel": 64,
107
+ "channel_mults": [
108
+ 1,
109
+ 2,
110
+ 4,
111
+ 8
112
+ ],
113
+ "attn_res": [
114
+ 16
115
+ ],
116
+ "num_head_channels": 32,
117
+ "res_blocks": 2,
118
+ "dropout": 0.2,
119
+ "image_size": 256
120
+ },
121
+ "beta_schedule": {
122
+ "train": {
123
+ "schedule": "linear",
124
+ "n_timestep": 2000,
125
+ "linear_start": 1e-06,
126
+ "linear_end": 0.01
127
+ },
128
+ "test": {
129
+ "schedule": "linear",
130
+ "n_timestep": 1000,
131
+ "linear_start": 0.0001,
132
+ "linear_end": 0.09
133
+ }
134
+ }
135
+ }
136
+ }
137
+ ],
138
+ "which_losses": [
139
+ "mse_loss"
140
+ ],
141
+ "which_metrics": [
142
+ "mae"
143
+ ]
144
+ },
145
+ "train": {
146
+ "n_epoch": 5000,
147
+ "n_iter": 100000000,
148
+ "val_epoch": 10,
149
+ "save_checkpoint_epoch": 10,
150
+ "log_iter": 10000,
151
+ "tensorboard": true
152
+ },
153
+ "debug": {
154
+ "val_epoch": 1,
155
+ "save_checkpoint_epoch": 1,
156
+ "log_iter": 10,
157
+ "debug_split": 50
158
+ }
159
+ }
experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/config/palette_4bs2_multi_old_x0.json ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "palette_4bs2_multi_old_x0", // experiments name
3
+ "gpu_ids": [0, 1, 2, 3], // gpu ids list, default is single 0
4
+ "seed" : -1, // random seed, seed <0 represents randomization not used
5
+ "finetune_norm": false, // find the parameters to optimize
6
+
7
+ "path": { //set every part file path
8
+ "base_dir": "experiments", // base path for all log except resume_state
9
+ "code": "code", // code backup
10
+ "tb_logger": "tb_logger", // path of tensorboard logger
11
+ "results": "results",
12
+ "checkpoint": "checkpoint",
13
+ // "resume_state": "experiments/inpainting_places2_220413_143231/checkpoint/25"
14
+ "resume_state": null // ex: 100, loading .state and .pth from given epoch and iteration
15
+ },
16
+
17
+ "datasets": { // train or test
18
+ "train": {
19
+ "which_dataset": { // import designated dataset using arguments
20
+ "name": ["data.dataset", "Sen2_MTC_Old_Multi"], // import Dataset() class / function(not recommend) from data.dataset.py (default is [data.dataset.py])
21
+ "args":{ // arguments to initialize dataset
22
+ "data_root": "../pmaa/data",
23
+ "mode": "train"
24
+ }
25
+ },
26
+ "dataloader":{
27
+ "validation_split": 2, // percent or number ## 這裡沒有生效(因為我們自己的數據集有專門劃分的驗證集)
28
+ "args":{ // arguments to initialize train_dataloader
29
+ "batch_size": 2, // batch size in each gpu
30
+ "num_workers": 4,
31
+ "shuffle": true,
32
+ "pin_memory": true,
33
+ "drop_last": true
34
+ },
35
+ "val_args":{ // arguments to initialize valid_dataloader, will overwrite the parameters in train_dataloader
36
+ "batch_size": 1, // batch size in each gpu
37
+ "num_workers": 4,
38
+ "shuffle": false,
39
+ "pin_memory": true,
40
+ "drop_last": false
41
+ }
42
+ }
43
+ },
44
+ "val": {
45
+ "which_dataset": {
46
+ "name": "Sen2_MTC_New_Multi", // import Dataset() class / function(not recommend) from default file
47
+ "args":{
48
+ "data_root": "../pmaa/data",
49
+ "mode": "val"
50
+ }
51
+ }
52
+ },
53
+ "test": {
54
+ "which_dataset": {
55
+ "name": "Sen2_MTC_New_Multi", // import Dataset() class / function(not recommend) from default file
56
+ "args":{
57
+ "data_root": "../pmaa/data",
58
+ "mode": "test"
59
+ }
60
+ },
61
+ "dataloader":{
62
+ "args":{
63
+ "batch_size": 8,
64
+ "num_workers": 8,
65
+ "pin_memory": true
66
+ }
67
+ }
68
+ }
69
+ },
70
+
71
+ "model": { // networks/metrics/losses/optimizers/lr_schedulers is a list and model is a dict
72
+ "which_model": { // import designated model(trainer) using arguments
73
+ "name": ["models.model", "Palette"], // import Model() class / function(not recommend) from models.model.py (default is [models.model.py])
74
+ "args": {
75
+ "sample_num": 8, // process of each image
76
+ "task": "decloud",
77
+ "ema_scheduler": {
78
+ "ema_start": 1,
79
+ "ema_iter": 1,
80
+ "ema_decay": 0.9999
81
+ },
82
+ "optimizers": [
83
+ { "lr": 5e-5, "weight_decay": 0}
84
+ ]
85
+ }
86
+ },
87
+ "which_networks": [ // import designated list of networks using arguments
88
+ {
89
+ "name": ["models.network_x0_dpm_solver", "Network"], // import Network() class / function(not recommend) from default file (default is [models/network.py])
90
+ "args": { // arguments to initialize network
91
+ "init_type": "kaiming", // method can be [normal | xavier| xavier_uniform | kaiming | orthogonal], default is kaiming
92
+ "module_name": "ours_down4_ca", // sr3 | guided_diffusion | ours | ours_down4_ca
93
+ "unet": {
94
+ "inp_channels": 12,
95
+ "out_channels": 3,
96
+ "encoder_dims": [64, 128, 256, 512, 1024],
97
+ "decoder_dims": [1024, 512, 256, 128, 64],
98
+ "encoder_blocks": [1, 1, 1, 1, 1],
99
+ "decoder_blocks": [1, 1, 1, 1, 1],
100
+ "drop_path_rate": 0.1,
101
+ "norm_type": "ln",
102
+ "act_type": "silu"
103
+ },
104
+ "beta_schedule": {
105
+ "train": {
106
+ "schedule": "linear",
107
+ "n_timestep": 2000,
108
+ // "n_timestep": 5, // debug
109
+ "linear_start": 1e-6,
110
+ "linear_end": 0.01
111
+ },
112
+ "test": {
113
+ "schedule": "linear",
114
+ "n_timestep": 1000,
115
+ "linear_start": 1e-4,
116
+ "linear_end": 0.09
117
+ }
118
+ }
119
+ }
120
+ }
121
+ ],
122
+ "which_losses": [ // import designated list of losses without arguments
123
+ "mse_loss" // import mse_loss() function/class from default file (default is [models/losses.py]), equivalent to { "name": "mse_loss", "args":{}}
124
+ ],
125
+ "which_metrics": [ // import designated list of metrics without arguments
126
+ "mae" // import mae() function/class from default file (default is [models/metrics.py]), equivalent to { "name": "mae", "args":{}}
127
+ ]
128
+ },
129
+
130
+ "train": { // arguments for basic training
131
+ "n_epoch": 5000, // max epochs, not limited now
132
+ "n_iter": 1e8, // max interations
133
+ "val_epoch": 100, // valdation every specified number of epochs
134
+ "save_checkpoint_epoch": 500,
135
+ "log_iter": 1e4, // log every specified number of iterations
136
+ "tensorboard" : false // tensorboardX enable
137
+ },
138
+
139
+ "debug": { // arguments in debug mode, which will replace arguments in train
140
+ "val_epoch": 50,
141
+ "save_checkpoint_epoch": 500,
142
+ "log_iter": 10,
143
+ "debug_split": 50 // percent or number, change the size of dataloder to debug_split.
144
+ }
145
+ }
experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/core/base_dataset.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.utils.data as data
2
+ from torchvision import transforms
3
+ from PIL import Image
4
+ import os
5
+ import numpy as np
6
+
7
+ IMG_EXTENSIONS = [
8
+ '.jpg', '.JPG', '.jpeg', '.JPEG',
9
+ '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP',
10
+ ]
11
+
12
+ def is_image_file(filename):
13
+ return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
14
+
15
+ def make_dataset(dir):
16
+ if os.path.isfile(dir):
17
+ images = [i for i in np.genfromtxt(dir, dtype=np.str, encoding='utf-8')]
18
+ else:
19
+ images = []
20
+ assert os.path.isdir(dir), '%s is not a valid directory' % dir
21
+ for root, _, fnames in sorted(os.walk(dir)):
22
+ for fname in sorted(fnames):
23
+ if is_image_file(fname):
24
+ path = os.path.join(root, fname)
25
+ images.append(path)
26
+
27
+ return images
28
+
29
+ def pil_loader(path):
30
+ return Image.open(path).convert('RGB')
31
+
32
+ class BaseDataset(data.Dataset):
33
+ def __init__(self, data_root, image_size=[256, 256], loader=pil_loader):
34
+ self.imgs = make_dataset(data_root)
35
+ self.tfs = transforms.Compose([
36
+ transforms.Resize((image_size[0], image_size[1])),
37
+ transforms.ToTensor(),
38
+ transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
39
+ ])
40
+ self.loader = loader
41
+
42
+ def __getitem__(self, index):
43
+ path = self.imgs[index]
44
+ img = self.tfs(self.loader(path))
45
+ return img
46
+
47
+ def __len__(self):
48
+ return len(self.imgs)
experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/core/base_model.py ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from abc import abstractmethod
3
+ from functools import partial
4
+ import collections
5
+
6
+ import torch
7
+ import torch.nn as nn
8
+
9
+
10
+ import core.util as Util
11
+ CustomResult = collections.namedtuple('CustomResult', 'name result')
12
+
13
+ class BaseModel():
14
+ def __init__(self, opt, phase_loader, val_loader, metrics, logger, writer):
15
+ """ init model with basic input, which are from __init__(**kwargs) function in inherited class """
16
+ self.opt = opt
17
+ self.phase = opt['phase']
18
+ self.set_device = partial(Util.set_device, rank=opt['global_rank'])
19
+
20
+ ''' optimizers and schedulers '''
21
+ self.schedulers = []
22
+ self.optimizers = []
23
+
24
+ ''' process record '''
25
+ self.batch_size = self.opt['datasets'][self.phase]['dataloader']['args']['batch_size']
26
+ self.epoch = 0
27
+ self.iter = 0
28
+
29
+ self.phase_loader = phase_loader
30
+ self.val_loader = val_loader
31
+ self.metrics = metrics
32
+
33
+ ''' logger to log file, which only work on GPU 0. writer to tensorboard and result file '''
34
+ self.logger = logger
35
+ self.writer = writer
36
+ self.results_dict = CustomResult([],[]) # {"name":[], "result":[]}
37
+
38
+ def train(self):
39
+ while self.epoch <= self.opt['train']['n_epoch'] and self.iter <= self.opt['train']['n_iter']:
40
+ self.epoch += 1
41
+ if self.opt['distributed']:
42
+ ''' sets the epoch for this sampler. When :attr:`shuffle=True`, this ensures all replicas use a different random ordering for each epoch '''
43
+ self.phase_loader.sampler.set_epoch(self.epoch)
44
+
45
+ train_log = self.train_step()
46
+
47
+ ''' save logged informations into log dict '''
48
+ train_log.update({'epoch': self.epoch, 'iters': self.iter})
49
+
50
+ ''' print logged informations to the screen and tensorboard '''
51
+ for key, value in train_log.items():
52
+ self.logger.info('{:5s}: {}\t'.format(str(key), value))
53
+
54
+ if self.epoch % self.opt['train']['save_checkpoint_epoch'] == 0:
55
+ self.logger.info('Saving the self at the end of epoch {:.0f}'.format(self.epoch))
56
+ self.save_everything()
57
+
58
+ if self.epoch % self.opt['train']['val_epoch'] == 0:
59
+ self.logger.info("\n\n\n------------------------------Validation Start------------------------------")
60
+ if self.val_loader is None:
61
+ self.logger.warning('Validation stop where dataloader is None, Skip it.')
62
+ else:
63
+ val_log = self.val_step()
64
+ for key, value in val_log.items():
65
+ self.logger.info('{:5s}: {}\t'.format(str(key), value))
66
+ self.logger.info("\n------------------------------Validation End------------------------------\n\n")
67
+ self.logger.info('Number of Epochs has reached the limit, End.')
68
+
69
+ def test(self):
70
+ pass
71
+
72
+ @abstractmethod
73
+ def train_step(self):
74
+ raise NotImplementedError('You must specify how to train your networks.')
75
+
76
+ @abstractmethod
77
+ def val_step(self):
78
+ raise NotImplementedError('You must specify how to do validation on your networks.')
79
+
80
+ def test_step(self):
81
+ pass
82
+
83
+ def print_network(self, network):
84
+ """ print network structure, only work on GPU 0 """
85
+ if self.opt['global_rank'] !=0:
86
+ return
87
+ if isinstance(network, nn.DataParallel) or isinstance(network, nn.parallel.DistributedDataParallel):
88
+ network = network.module
89
+
90
+ s, n = str(network), sum(map(lambda x: x.numel(), network.parameters()))
91
+ net_struc_str = '{}'.format(network.__class__.__name__)
92
+ self.logger.info('Network structure: {}, with parameters: {:,d}'.format(net_struc_str, n))
93
+ self.logger.info(s)
94
+
95
+ def save_network(self, network, network_label):
96
+ """ save network structure, only work on GPU 0 """
97
+ if self.opt['global_rank'] !=0:
98
+ return
99
+ save_filename = '{}_{}.pth'.format(self.epoch, network_label)
100
+ save_path = os.path.join(self.opt['path']['checkpoint'], save_filename)
101
+ if isinstance(network, nn.DataParallel) or isinstance(network, nn.parallel.DistributedDataParallel):
102
+ network = network.module
103
+ state_dict = network.state_dict()
104
+ for key, param in state_dict.items():
105
+ state_dict[key] = param.cpu()
106
+ torch.save(state_dict, save_path)
107
+
108
+ def load_network(self, network, network_label, strict=True):
109
+ if self.opt['path']['resume_state'] is None:
110
+ return
111
+ self.logger.info('Beign loading pretrained model [{:s}] ...'.format(network_label))
112
+
113
+ model_path = "{}_{}.pth".format(self.opt['path']['resume_state'], network_label)
114
+
115
+ if not os.path.exists(model_path):
116
+ self.logger.warning('Pretrained model in [{:s}] is not existed, Skip it'.format(model_path))
117
+ return
118
+
119
+ self.logger.info('Loading pretrained model from [{:s}] ...'.format(model_path))
120
+ if isinstance(network, nn.DataParallel) or isinstance(network, nn.parallel.DistributedDataParallel):
121
+ network = network.module
122
+ network.load_state_dict(torch.load(model_path, map_location = lambda storage, loc: Util.set_device(storage)), strict=strict)
123
+
124
+ def save_training_state(self):
125
+ """ saves training state during training, only work on GPU 0 """
126
+ if self.opt['global_rank'] !=0:
127
+ return
128
+ assert isinstance(self.optimizers, list) and isinstance(self.schedulers, list), 'optimizers and schedulers must be a list.'
129
+ state = {'epoch': self.epoch, 'iter': self.iter, 'schedulers': [], 'optimizers': []}
130
+ for s in self.schedulers:
131
+ state['schedulers'].append(s.state_dict())
132
+ for o in self.optimizers:
133
+ state['optimizers'].append(o.state_dict())
134
+ save_filename = '{}.state'.format(self.epoch)
135
+ save_path = os.path.join(self.opt['path']['checkpoint'], save_filename)
136
+ torch.save(state, save_path)
137
+
138
+ def resume_training(self):
139
+ """ resume the optimizers and schedulers for training, only work when phase is test or resume training enable """
140
+ if self.phase!='train' or self. opt['path']['resume_state'] is None:
141
+ return
142
+ self.logger.info('Beign loading training states'.format())
143
+ assert isinstance(self.optimizers, list) and isinstance(self.schedulers, list), 'optimizers and schedulers must be a list.'
144
+
145
+ state_path = "{}.state".format(self. opt['path']['resume_state'])
146
+
147
+ if not os.path.exists(state_path):
148
+ self.logger.warning('Training state in [{:s}] is not existed, Skip it'.format(state_path))
149
+ return
150
+
151
+ self.logger.info('Loading training state for [{:s}] ...'.format(state_path))
152
+ resume_state = torch.load(state_path, map_location = lambda storage, loc: self.set_device(storage))
153
+
154
+ resume_optimizers = resume_state['optimizers']
155
+ resume_schedulers = resume_state['schedulers']
156
+ assert len(resume_optimizers) == len(self.optimizers), 'Wrong lengths of optimizers {} != {}'.format(len(resume_optimizers), len(self.optimizers))
157
+ assert len(resume_schedulers) == len(self.schedulers), 'Wrong lengths of schedulers {} != {}'.format(len(resume_schedulers), len(self.schedulers))
158
+ for i, o in enumerate(resume_optimizers):
159
+ self.optimizers[i].load_state_dict(o)
160
+ for i, s in enumerate(resume_schedulers):
161
+ self.schedulers[i].load_state_dict(s)
162
+
163
+ self.epoch = resume_state['epoch']
164
+ self.iter = resume_state['iter']
165
+
166
+ def load_everything(self):
167
+ pass
168
+
169
+ @abstractmethod
170
+ def save_everything(self):
171
+ raise NotImplementedError('You must specify how to save your networks, optimizers and schedulers.')
experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/core/base_network.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ class BaseNetwork(nn.Module):
3
+ def __init__(self, init_type='kaiming', gain=0.02):
4
+ super(BaseNetwork, self).__init__()
5
+ self.init_type = init_type
6
+ self.gain = gain
7
+
8
+ def init_weights(self):
9
+ """
10
+ initialize network's weights
11
+ init_type: normal | xavier | kaiming | orthogonal
12
+ https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/9451e70673400885567d08a9e97ade2524c700d0/models/networks.py#L39
13
+ """
14
+
15
+ def init_func(m):
16
+ classname = m.__class__.__name__
17
+ if classname.find('InstanceNorm2d') != -1:
18
+ if hasattr(m, 'weight') and m.weight is not None:
19
+ nn.init.constant_(m.weight.data, 1.0)
20
+ if hasattr(m, 'bias') and m.bias is not None:
21
+ nn.init.constant_(m.bias.data, 0.0)
22
+ elif hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
23
+ if self.init_type == 'normal':
24
+ nn.init.normal_(m.weight.data, 0.0, self.gain)
25
+ elif self.init_type == 'xavier':
26
+ nn.init.xavier_normal_(m.weight.data, gain=self.gain)
27
+ elif self.init_type == 'xavier_uniform':
28
+ nn.init.xavier_uniform_(m.weight.data, gain=1.0)
29
+ elif self.init_type == 'kaiming':
30
+ nn.init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
31
+ elif self.init_type == 'orthogonal':
32
+ nn.init.orthogonal_(m.weight.data, gain=self.gain)
33
+ elif self.init_type == 'none': # uses pytorch's default init method
34
+ m.reset_parameters()
35
+ else:
36
+ raise NotImplementedError('initialization method [%s] is not implemented' % self.init_type)
37
+ if hasattr(m, 'bias') and m.bias is not None:
38
+ nn.init.constant_(m.bias.data, 0.0)
39
+
40
+ self.apply(init_func)
41
+ # propagate to children
42
+ for m in self.children():
43
+ if hasattr(m, 'init_weights'):
44
+ m.init_weights(self.init_type, self.gain)
45
+
46
+
47
+
48
+
experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/core/dpm_solver_pytorch.py ADDED
@@ -0,0 +1,1306 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn.functional as F
3
+ import math
4
+
5
+
6
+ class NoiseScheduleVP:
7
+ def __init__(
8
+ self,
9
+ schedule='discrete',
10
+ betas=None,
11
+ alphas_cumprod=None,
12
+ continuous_beta_0=0.1,
13
+ continuous_beta_1=20.,
14
+ dtype=torch.float32,
15
+ ):
16
+ """Create a wrapper class for the forward SDE (VP type).
17
+
18
+ ***
19
+ Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
20
+ We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
21
+ ***
22
+
23
+ The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
24
+ We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
25
+ Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
26
+
27
+ log_alpha_t = self.marginal_log_mean_coeff(t)
28
+ sigma_t = self.marginal_std(t)
29
+ lambda_t = self.marginal_lambda(t)
30
+
31
+ Moreover, as lambda(t) is an invertible function, we also support its inverse function:
32
+
33
+ t = self.inverse_lambda(lambda_t)
34
+
35
+ ===============================================================
36
+
37
+ We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
38
+
39
+ 1. For discrete-time DPMs:
40
+
41
+ For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
42
+ t_i = (i + 1) / N
43
+ e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
44
+ We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
45
+
46
+ Args:
47
+ betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
48
+ alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
49
+
50
+ Note that we always have alphas_cumprod = cumprod(1 - betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
51
+
52
+ **Important**: Please pay special attention for the args for `alphas_cumprod`:
53
+ The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
54
+ q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
55
+ Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
56
+ alpha_{t_n} = \sqrt{\hat{alpha_n}},
57
+ and
58
+ log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
59
+
60
+
61
+ 2. For continuous-time DPMs:
62
+
63
+ We support the linear VPSDE for the continuous time setting. The hyperparameters for the noise
64
+ schedule are the default settings in Yang Song's ScoreSDE:
65
+
66
+ Args:
67
+ beta_min: A `float` number. The smallest beta for the linear schedule.
68
+ beta_max: A `float` number. The largest beta for the linear schedule.
69
+ T: A `float` number. The ending time of the forward process.
70
+
71
+ ===============================================================
72
+
73
+ Args:
74
+ schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
75
+ 'linear' for continuous-time DPMs.
76
+ Returns:
77
+ A wrapper object of the forward SDE (VP type).
78
+
79
+ ===============================================================
80
+
81
+ Example:
82
+
83
+ # For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
84
+ >>> ns = NoiseScheduleVP('discrete', betas=betas)
85
+
86
+ # For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
87
+ >>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
88
+
89
+ # For continuous-time DPMs (VPSDE), linear schedule:
90
+ >>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
91
+
92
+ """
93
+
94
+ if schedule not in ['discrete', 'linear']:
95
+ raise ValueError("Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear'".format(schedule))
96
+
97
+ self.schedule = schedule
98
+ if schedule == 'discrete':
99
+ if betas is not None:
100
+ log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
101
+ else:
102
+ assert alphas_cumprod is not None
103
+ log_alphas = 0.5 * torch.log(alphas_cumprod)
104
+ self.T = 1.
105
+ self.log_alpha_array = self.numerical_clip_alpha(log_alphas).reshape((1, -1,)).to(dtype=dtype)
106
+ self.total_N = self.log_alpha_array.shape[1]
107
+ self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1)).to(dtype=dtype)
108
+ else:
109
+ self.T = 1.
110
+ self.total_N = 1000
111
+ self.beta_0 = continuous_beta_0
112
+ self.beta_1 = continuous_beta_1
113
+
114
+ def numerical_clip_alpha(self, log_alphas, clipped_lambda=-5.1):
115
+ """
116
+ For some beta schedules such as cosine schedule, the log-SNR has numerical isssues.
117
+ We clip the log-SNR near t=T within -5.1 to ensure the stability.
118
+ Such a trick is very useful for diffusion models with the cosine schedule, such as i-DDPM, guided-diffusion and GLIDE.
119
+ """
120
+ log_sigmas = 0.5 * torch.log(1. - torch.exp(2. * log_alphas))
121
+ lambs = log_alphas - log_sigmas
122
+ idx = torch.searchsorted(torch.flip(lambs, [0]), clipped_lambda)
123
+ if idx > 0:
124
+ log_alphas = log_alphas[:-idx]
125
+ return log_alphas
126
+
127
+ def marginal_log_mean_coeff(self, t):
128
+ """
129
+ Compute log(alpha_t) of a given continuous-time label t in [0, T].
130
+ """
131
+ if self.schedule == 'discrete':
132
+ return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device), self.log_alpha_array.to(t.device)).reshape((-1))
133
+ elif self.schedule == 'linear':
134
+ return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
135
+
136
+ def marginal_alpha(self, t):
137
+ """
138
+ Compute alpha_t of a given continuous-time label t in [0, T].
139
+ """
140
+ return torch.exp(self.marginal_log_mean_coeff(t))
141
+
142
+ def marginal_std(self, t):
143
+ """
144
+ Compute sigma_t of a given continuous-time label t in [0, T].
145
+ """
146
+ return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
147
+
148
+ def marginal_lambda(self, t):
149
+ """
150
+ Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
151
+ """
152
+ log_mean_coeff = self.marginal_log_mean_coeff(t)
153
+ log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
154
+ return log_mean_coeff - log_std
155
+
156
+ def inverse_lambda(self, lamb):
157
+ """
158
+ Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
159
+ """
160
+ if self.schedule == 'linear':
161
+ tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
162
+ Delta = self.beta_0**2 + tmp
163
+ return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
164
+ elif self.schedule == 'discrete':
165
+ log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
166
+ t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]), torch.flip(self.t_array.to(lamb.device), [1]))
167
+ return t.reshape((-1,))
168
+
169
+
170
+ def model_wrapper(
171
+ model,
172
+ noise_schedule,
173
+ model_type="noise",
174
+ model_kwargs={},
175
+ guidance_type="uncond",
176
+ condition=None,
177
+ unconditional_condition=None,
178
+ guidance_scale=1.,
179
+ classifier_fn=None,
180
+ classifier_kwargs={},
181
+ ):
182
+ """Create a wrapper function for the noise prediction model.
183
+
184
+ DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
185
+ firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
186
+
187
+ We support four types of the diffusion model by setting `model_type`:
188
+
189
+ 1. "noise": noise prediction model. (Trained by predicting noise).
190
+
191
+ 2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
192
+
193
+ 3. "v": velocity prediction model. (Trained by predicting the velocity).
194
+ The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
195
+
196
+ [1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
197
+ arXiv preprint arXiv:2202.00512 (2022).
198
+ [2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
199
+ arXiv preprint arXiv:2210.02303 (2022).
200
+
201
+ 4. "score": marginal score function. (Trained by denoising score matching).
202
+ Note that the score function and the noise prediction model follows a simple relationship:
203
+ ```
204
+ noise(x_t, t) = -sigma_t * score(x_t, t)
205
+ ```
206
+
207
+ We support three types of guided sampling by DPMs by setting `guidance_type`:
208
+ 1. "uncond": unconditional sampling by DPMs.
209
+ The input `model` has the following format:
210
+ ``
211
+ model(x, t_input, **model_kwargs) -> noise | x_start | v | score
212
+ ``
213
+
214
+ 2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
215
+ The input `model` has the following format:
216
+ ``
217
+ model(x, t_input, **model_kwargs) -> noise | x_start | v | score
218
+ ``
219
+
220
+ The input `classifier_fn` has the following format:
221
+ ``
222
+ classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
223
+ ``
224
+
225
+ [3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
226
+ in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
227
+
228
+ 3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
229
+ The input `model` has the following format:
230
+ ``
231
+ model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
232
+ ``
233
+ And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
234
+
235
+ [4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
236
+ arXiv preprint arXiv:2207.12598 (2022).
237
+
238
+
239
+ The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
240
+ or continuous-time labels (i.e. epsilon to T).
241
+
242
+ We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
243
+ ``
244
+ def model_fn(x, t_continuous) -> noise:
245
+ t_input = get_model_input_time(t_continuous)
246
+ return noise_pred(model, x, t_input, **model_kwargs)
247
+ ``
248
+ where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
249
+
250
+ ===============================================================
251
+
252
+ Args:
253
+ model: A diffusion model with the corresponding format described above.
254
+ noise_schedule: A noise schedule object, such as NoiseScheduleVP.
255
+ model_type: A `str`. The parameterization type of the diffusion model.
256
+ "noise" or "x_start" or "v" or "score".
257
+ model_kwargs: A `dict`. A dict for the other inputs of the model function.
258
+ guidance_type: A `str`. The type of the guidance for sampling.
259
+ "uncond" or "classifier" or "classifier-free".
260
+ condition: A pytorch tensor. The condition for the guided sampling.
261
+ Only used for "classifier" or "classifier-free" guidance type.
262
+ unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
263
+ Only used for "classifier-free" guidance type.
264
+ guidance_scale: A `float`. The scale for the guided sampling.
265
+ classifier_fn: A classifier function. Only used for the classifier guidance.
266
+ classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
267
+ Returns:
268
+ A noise prediction model that accepts the noised data and the continuous time as the inputs.
269
+ """
270
+
271
+ def get_model_input_time(t_continuous):
272
+ """
273
+ Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
274
+ For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
275
+ For continuous-time DPMs, we just use `t_continuous`.
276
+ """
277
+ if noise_schedule.schedule == 'discrete':
278
+ return (t_continuous - 1. / noise_schedule.total_N) * 1000.
279
+ else:
280
+ return t_continuous
281
+
282
+ def noise_pred_fn(x, t_continuous, cond=None):
283
+ t_input = get_model_input_time(t_continuous)
284
+ if cond is None:
285
+ output = model(x, t_input, **model_kwargs)
286
+ else:
287
+ # output = model(x, t_input, cond, **model_kwargs) zxc
288
+ output = model(torch.cat((cond, x), dim=1), t_input, **model_kwargs)
289
+ if model_type == "noise":
290
+ return output
291
+ elif model_type == "x_start":
292
+ alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
293
+ return (x - alpha_t * output) / sigma_t
294
+ elif model_type == "v":
295
+ alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
296
+ return alpha_t * output + sigma_t * x
297
+ elif model_type == "score":
298
+ sigma_t = noise_schedule.marginal_std(t_continuous)
299
+ return -sigma_t * output
300
+
301
+ def cond_grad_fn(x, t_input):
302
+ """
303
+ Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
304
+ """
305
+ with torch.enable_grad():
306
+ x_in = x.detach().requires_grad_(True)
307
+ log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
308
+ return torch.autograd.grad(log_prob.sum(), x_in)[0]
309
+
310
+ def model_fn(x, t_continuous):
311
+ """
312
+ The noise predicition model function that is used for DPM-Solver.
313
+ """
314
+ if guidance_type == "uncond":
315
+ return noise_pred_fn(x, t_continuous)
316
+ elif guidance_type == "classifier":
317
+ assert classifier_fn is not None
318
+ t_input = get_model_input_time(t_continuous)
319
+ cond_grad = cond_grad_fn(x, t_input)
320
+ sigma_t = noise_schedule.marginal_std(t_continuous)
321
+ noise = noise_pred_fn(x, t_continuous)
322
+ return noise - guidance_scale * expand_dims(sigma_t, x.dim()) * cond_grad
323
+ elif guidance_type == "classifier-free":
324
+ if guidance_scale == 1. or unconditional_condition is None:
325
+ return noise_pred_fn(x, t_continuous, cond=condition)
326
+ else:
327
+ x_in = torch.cat([x] * 2)
328
+ t_in = torch.cat([t_continuous] * 2)
329
+ c_in = torch.cat([unconditional_condition, condition])
330
+ noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
331
+ return noise_uncond + guidance_scale * (noise - noise_uncond)
332
+
333
+ assert model_type in ["noise", "x_start", "v", "score"]
334
+ assert guidance_type in ["uncond", "classifier", "classifier-free"]
335
+ return model_fn
336
+
337
+
338
+ class DPM_Solver:
339
+ def __init__(
340
+ self,
341
+ model_fn,
342
+ noise_schedule,
343
+ algorithm_type="dpmsolver++",
344
+ correcting_x0_fn=None,
345
+ correcting_xt_fn=None,
346
+ thresholding_max_val=1.,
347
+ dynamic_thresholding_ratio=0.995,
348
+ ):
349
+ """Construct a DPM-Solver.
350
+
351
+ We support both DPM-Solver (`algorithm_type="dpmsolver"`) and DPM-Solver++ (`algorithm_type="dpmsolver++"`).
352
+
353
+ We also support the "dynamic thresholding" method in Imagen[1]. For pixel-space diffusion models, you
354
+ can set both `algorithm_type="dpmsolver++"` and `correcting_x0_fn="dynamic_thresholding"` to use the
355
+ dynamic thresholding. The "dynamic thresholding" can greatly improve the sample quality for pixel-space
356
+ DPMs with large guidance scales. Note that the thresholding method is **unsuitable** for latent-space
357
+ DPMs (such as stable-diffusion).
358
+
359
+ To support advanced algorithms in image-to-image applications, we also support corrector functions for
360
+ both x0 and xt.
361
+
362
+ Args:
363
+ model_fn: A noise prediction model function which accepts the continuous-time input (t in [epsilon, T]):
364
+ ``
365
+ def model_fn(x, t_continuous):
366
+ return noise
367
+ ``
368
+ The shape of `x` is `(batch_size, **shape)`, and the shape of `t_continuous` is `(batch_size,)`.
369
+ noise_schedule: A noise schedule object, such as NoiseScheduleVP.
370
+ algorithm_type: A `str`. Either "dpmsolver" or "dpmsolver++".
371
+ correcting_x0_fn: A `str` or a function with the following format:
372
+ ```
373
+ def correcting_x0_fn(x0, t):
374
+ x0_new = ...
375
+ return x0_new
376
+ ```
377
+ This function is to correct the outputs of the data prediction model at each sampling step. e.g.,
378
+ ```
379
+ x0_pred = data_pred_model(xt, t)
380
+ if correcting_x0_fn is not None:
381
+ x0_pred = correcting_x0_fn(x0_pred, t)
382
+ xt_1 = update(x0_pred, xt, t)
383
+ ```
384
+ If `correcting_x0_fn="dynamic_thresholding"`, we use the dynamic thresholding proposed in Imagen[1].
385
+ correcting_xt_fn: A function with the following format:
386
+ ```
387
+ def correcting_xt_fn(xt, t, step):
388
+ x_new = ...
389
+ return x_new
390
+ ```
391
+ This function is to correct the intermediate samples xt at each sampling step. e.g.,
392
+ ```
393
+ xt = ...
394
+ xt = correcting_xt_fn(xt, t, step)
395
+ ```
396
+ thresholding_max_val: A `float`. The max value for thresholding.
397
+ Valid only when use `dpmsolver++` and `correcting_x0_fn="dynamic_thresholding"`.
398
+ dynamic_thresholding_ratio: A `float`. The ratio for dynamic thresholding (see Imagen[1] for details).
399
+ Valid only when use `dpmsolver++` and `correcting_x0_fn="dynamic_thresholding"`.
400
+
401
+ [1] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour,
402
+ Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-image diffusion models
403
+ with deep language understanding. arXiv preprint arXiv:2205.11487, 2022b.
404
+ """
405
+ self.model = lambda x, t: model_fn(x, t.expand((x.shape[0])))
406
+ self.noise_schedule = noise_schedule
407
+ assert algorithm_type in ["dpmsolver", "dpmsolver++"]
408
+ self.algorithm_type = algorithm_type
409
+ if correcting_x0_fn == "dynamic_thresholding":
410
+ self.correcting_x0_fn = self.dynamic_thresholding_fn
411
+ else:
412
+ self.correcting_x0_fn = correcting_x0_fn
413
+ self.correcting_xt_fn = correcting_xt_fn
414
+ self.dynamic_thresholding_ratio = dynamic_thresholding_ratio
415
+ self.thresholding_max_val = thresholding_max_val
416
+
417
+ def dynamic_thresholding_fn(self, x0, t):
418
+ """
419
+ The dynamic thresholding method.
420
+ """
421
+ dims = x0.dim()
422
+ p = self.dynamic_thresholding_ratio
423
+ s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
424
+ s = expand_dims(torch.maximum(s, self.thresholding_max_val * torch.ones_like(s).to(s.device)), dims)
425
+ x0 = torch.clamp(x0, -s, s) / s
426
+ return x0
427
+
428
+ def noise_prediction_fn(self, x, t):
429
+ """
430
+ Return the noise prediction model.
431
+ """
432
+ return self.model(x, t)
433
+
434
+ def data_prediction_fn(self, x, t):
435
+ """
436
+ Return the data prediction model (with corrector).
437
+ """
438
+ noise = self.noise_prediction_fn(x, t)
439
+ alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
440
+ x0 = (x - sigma_t * noise) / alpha_t
441
+ if self.correcting_x0_fn is not None:
442
+ x0 = self.correcting_x0_fn(x0, t)
443
+ return x0
444
+
445
+ def model_fn(self, x, t):
446
+ """
447
+ Convert the model to the noise prediction model or the data prediction model.
448
+ """
449
+ if self.algorithm_type == "dpmsolver++":
450
+ return self.data_prediction_fn(x, t)
451
+ else:
452
+ return self.noise_prediction_fn(x, t)
453
+
454
+ def get_time_steps(self, skip_type, t_T, t_0, N, device):
455
+ """Compute the intermediate time steps for sampling.
456
+
457
+ Args:
458
+ skip_type: A `str`. The type for the spacing of the time steps. We support three types:
459
+ - 'logSNR': uniform logSNR for the time steps.
460
+ - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
461
+ - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
462
+ t_T: A `float`. The starting time of the sampling (default is T).
463
+ t_0: A `float`. The ending time of the sampling (default is epsilon).
464
+ N: A `int`. The total number of the spacing of the time steps.
465
+ device: A torch device.
466
+ Returns:
467
+ A pytorch tensor of the time steps, with the shape (N + 1,).
468
+ """
469
+ if skip_type == 'logSNR':
470
+ lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
471
+ lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
472
+ logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
473
+ return self.noise_schedule.inverse_lambda(logSNR_steps)
474
+ elif skip_type == 'time_uniform':
475
+ return torch.linspace(t_T, t_0, N + 1).to(device)
476
+ elif skip_type == 'time_quadratic':
477
+ t_order = 2
478
+ t = torch.linspace(t_T**(1. / t_order), t_0**(1. / t_order), N + 1).pow(t_order).to(device)
479
+ return t
480
+ else:
481
+ raise ValueError("Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type))
482
+
483
+ def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
484
+ """
485
+ Get the order of each step for sampling by the singlestep DPM-Solver.
486
+
487
+ We combine both DPM-Solver-1,2,3 to use all the function evaluations, which is named as "DPM-Solver-fast".
488
+ Given a fixed number of function evaluations by `steps`, the sampling procedure by DPM-Solver-fast is:
489
+ - If order == 1:
490
+ We take `steps` of DPM-Solver-1 (i.e. DDIM).
491
+ - If order == 2:
492
+ - Denote K = (steps // 2). We take K or (K + 1) intermediate time steps for sampling.
493
+ - If steps % 2 == 0, we use K steps of DPM-Solver-2.
494
+ - If steps % 2 == 1, we use K steps of DPM-Solver-2 and 1 step of DPM-Solver-1.
495
+ - If order == 3:
496
+ - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
497
+ - If steps % 3 == 0, we use (K - 2) steps of DPM-Solver-3, and 1 step of DPM-Solver-2 and 1 step of DPM-Solver-1.
498
+ - If steps % 3 == 1, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-1.
499
+ - If steps % 3 == 2, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-2.
500
+
501
+ ============================================
502
+ Args:
503
+ order: A `int`. The max order for the solver (2 or 3).
504
+ steps: A `int`. The total number of function evaluations (NFE).
505
+ skip_type: A `str`. The type for the spacing of the time steps. We support three types:
506
+ - 'logSNR': uniform logSNR for the time steps.
507
+ - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
508
+ - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
509
+ t_T: A `float`. The starting time of the sampling (default is T).
510
+ t_0: A `float`. The ending time of the sampling (default is epsilon).
511
+ device: A torch device.
512
+ Returns:
513
+ orders: A list of the solver order of each step.
514
+ """
515
+ if order == 3:
516
+ K = steps // 3 + 1
517
+ if steps % 3 == 0:
518
+ orders = [3,] * (K - 2) + [2, 1]
519
+ elif steps % 3 == 1:
520
+ orders = [3,] * (K - 1) + [1]
521
+ else:
522
+ orders = [3,] * (K - 1) + [2]
523
+ elif order == 2:
524
+ if steps % 2 == 0:
525
+ K = steps // 2
526
+ orders = [2,] * K
527
+ else:
528
+ K = steps // 2 + 1
529
+ orders = [2,] * (K - 1) + [1]
530
+ elif order == 1:
531
+ K = 1
532
+ orders = [1,] * steps
533
+ else:
534
+ raise ValueError("'order' must be '1' or '2' or '3'.")
535
+ if skip_type == 'logSNR':
536
+ # To reproduce the results in DPM-Solver paper
537
+ timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
538
+ else:
539
+ timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[torch.cumsum(torch.tensor([0,] + orders), 0).to(device)]
540
+ return timesteps_outer, orders
541
+
542
+ def denoise_to_zero_fn(self, x, s):
543
+ """
544
+ Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
545
+ """
546
+ return self.data_prediction_fn(x, s)
547
+
548
+ def dpm_solver_first_update(self, x, s, t, model_s=None, return_intermediate=False):
549
+ """
550
+ DPM-Solver-1 (equivalent to DDIM) from time `s` to time `t`.
551
+
552
+ Args:
553
+ x: A pytorch tensor. The initial value at time `s`.
554
+ s: A pytorch tensor. The starting time, with the shape (1,).
555
+ t: A pytorch tensor. The ending time, with the shape (1,).
556
+ model_s: A pytorch tensor. The model function evaluated at time `s`.
557
+ If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
558
+ return_intermediate: A `bool`. If true, also return the model value at time `s`.
559
+ Returns:
560
+ x_t: A pytorch tensor. The approximated solution at time `t`.
561
+ """
562
+ ns = self.noise_schedule
563
+ dims = x.dim()
564
+ lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
565
+ h = lambda_t - lambda_s
566
+ log_alpha_s, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(t)
567
+ sigma_s, sigma_t = ns.marginal_std(s), ns.marginal_std(t)
568
+ alpha_t = torch.exp(log_alpha_t)
569
+
570
+ if self.algorithm_type == "dpmsolver++":
571
+ phi_1 = torch.expm1(-h)
572
+ if model_s is None:
573
+ model_s = self.model_fn(x, s)
574
+ x_t = (
575
+ sigma_t / sigma_s * x
576
+ - alpha_t * phi_1 * model_s
577
+ )
578
+ if return_intermediate:
579
+ return x_t, {'model_s': model_s}
580
+ else:
581
+ return x_t
582
+ else:
583
+ phi_1 = torch.expm1(h)
584
+ if model_s is None:
585
+ model_s = self.model_fn(x, s)
586
+ x_t = (
587
+ torch.exp(log_alpha_t - log_alpha_s) * x
588
+ - (sigma_t * phi_1) * model_s
589
+ )
590
+ if return_intermediate:
591
+ return x_t, {'model_s': model_s}
592
+ else:
593
+ return x_t
594
+
595
+ def singlestep_dpm_solver_second_update(self, x, s, t, r1=0.5, model_s=None, return_intermediate=False, solver_type='dpmsolver'):
596
+ """
597
+ Singlestep solver DPM-Solver-2 from time `s` to time `t`.
598
+
599
+ Args:
600
+ x: A pytorch tensor. The initial value at time `s`.
601
+ s: A pytorch tensor. The starting time, with the shape (1,).
602
+ t: A pytorch tensor. The ending time, with the shape (1,).
603
+ r1: A `float`. The hyperparameter of the second-order solver.
604
+ model_s: A pytorch tensor. The model function evaluated at time `s`.
605
+ If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
606
+ return_intermediate: A `bool`. If true, also return the model value at time `s` and `s1` (the intermediate time).
607
+ solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
608
+ The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
609
+ Returns:
610
+ x_t: A pytorch tensor. The approximated solution at time `t`.
611
+ """
612
+ if solver_type not in ['dpmsolver', 'taylor']:
613
+ raise ValueError("'solver_type' must be either 'dpmsolver' or 'taylor', got {}".format(solver_type))
614
+ if r1 is None:
615
+ r1 = 0.5
616
+ ns = self.noise_schedule
617
+ lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
618
+ h = lambda_t - lambda_s
619
+ lambda_s1 = lambda_s + r1 * h
620
+ s1 = ns.inverse_lambda(lambda_s1)
621
+ log_alpha_s, log_alpha_s1, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(t)
622
+ sigma_s, sigma_s1, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(t)
623
+ alpha_s1, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_t)
624
+
625
+ if self.algorithm_type == "dpmsolver++":
626
+ phi_11 = torch.expm1(-r1 * h)
627
+ phi_1 = torch.expm1(-h)
628
+
629
+ if model_s is None:
630
+ model_s = self.model_fn(x, s)
631
+ x_s1 = (
632
+ (sigma_s1 / sigma_s) * x
633
+ - (alpha_s1 * phi_11) * model_s
634
+ )
635
+ model_s1 = self.model_fn(x_s1, s1)
636
+ if solver_type == 'dpmsolver':
637
+ x_t = (
638
+ (sigma_t / sigma_s) * x
639
+ - (alpha_t * phi_1) * model_s
640
+ - (0.5 / r1) * (alpha_t * phi_1) * (model_s1 - model_s)
641
+ )
642
+ elif solver_type == 'taylor':
643
+ x_t = (
644
+ (sigma_t / sigma_s) * x
645
+ - (alpha_t * phi_1) * model_s
646
+ + (1. / r1) * (alpha_t * (phi_1 / h + 1.)) * (model_s1 - model_s)
647
+ )
648
+ else:
649
+ phi_11 = torch.expm1(r1 * h)
650
+ phi_1 = torch.expm1(h)
651
+
652
+ if model_s is None:
653
+ model_s = self.model_fn(x, s)
654
+ x_s1 = (
655
+ torch.exp(log_alpha_s1 - log_alpha_s) * x
656
+ - (sigma_s1 * phi_11) * model_s
657
+ )
658
+ model_s1 = self.model_fn(x_s1, s1)
659
+ if solver_type == 'dpmsolver':
660
+ x_t = (
661
+ torch.exp(log_alpha_t - log_alpha_s) * x
662
+ - (sigma_t * phi_1) * model_s
663
+ - (0.5 / r1) * (sigma_t * phi_1) * (model_s1 - model_s)
664
+ )
665
+ elif solver_type == 'taylor':
666
+ x_t = (
667
+ torch.exp(log_alpha_t - log_alpha_s) * x
668
+ - (sigma_t * phi_1) * model_s
669
+ - (1. / r1) * (sigma_t * (phi_1 / h - 1.)) * (model_s1 - model_s)
670
+ )
671
+ if return_intermediate:
672
+ return x_t, {'model_s': model_s, 'model_s1': model_s1}
673
+ else:
674
+ return x_t
675
+
676
+ def singlestep_dpm_solver_third_update(self, x, s, t, r1=1./3., r2=2./3., model_s=None, model_s1=None, return_intermediate=False, solver_type='dpmsolver'):
677
+ """
678
+ Singlestep solver DPM-Solver-3 from time `s` to time `t`.
679
+
680
+ Args:
681
+ x: A pytorch tensor. The initial value at time `s`.
682
+ s: A pytorch tensor. The starting time, with the shape (1,).
683
+ t: A pytorch tensor. The ending time, with the shape (1,).
684
+ r1: A `float`. The hyperparameter of the third-order solver.
685
+ r2: A `float`. The hyperparameter of the third-order solver.
686
+ model_s: A pytorch tensor. The model function evaluated at time `s`.
687
+ If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
688
+ model_s1: A pytorch tensor. The model function evaluated at time `s1` (the intermediate time given by `r1`).
689
+ If `model_s1` is None, we evaluate the model at `s1`; otherwise we directly use it.
690
+ return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
691
+ solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
692
+ The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
693
+ Returns:
694
+ x_t: A pytorch tensor. The approximated solution at time `t`.
695
+ """
696
+ if solver_type not in ['dpmsolver', 'taylor']:
697
+ raise ValueError("'solver_type' must be either 'dpmsolver' or 'taylor', got {}".format(solver_type))
698
+ if r1 is None:
699
+ r1 = 1. / 3.
700
+ if r2 is None:
701
+ r2 = 2. / 3.
702
+ ns = self.noise_schedule
703
+ lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
704
+ h = lambda_t - lambda_s
705
+ lambda_s1 = lambda_s + r1 * h
706
+ lambda_s2 = lambda_s + r2 * h
707
+ s1 = ns.inverse_lambda(lambda_s1)
708
+ s2 = ns.inverse_lambda(lambda_s2)
709
+ log_alpha_s, log_alpha_s1, log_alpha_s2, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(s2), ns.marginal_log_mean_coeff(t)
710
+ sigma_s, sigma_s1, sigma_s2, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(s2), ns.marginal_std(t)
711
+ alpha_s1, alpha_s2, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_s2), torch.exp(log_alpha_t)
712
+
713
+ if self.algorithm_type == "dpmsolver++":
714
+ phi_11 = torch.expm1(-r1 * h)
715
+ phi_12 = torch.expm1(-r2 * h)
716
+ phi_1 = torch.expm1(-h)
717
+ phi_22 = torch.expm1(-r2 * h) / (r2 * h) + 1.
718
+ phi_2 = phi_1 / h + 1.
719
+ phi_3 = phi_2 / h - 0.5
720
+
721
+ if model_s is None:
722
+ model_s = self.model_fn(x, s)
723
+ if model_s1 is None:
724
+ x_s1 = (
725
+ (sigma_s1 / sigma_s) * x
726
+ - (alpha_s1 * phi_11) * model_s
727
+ )
728
+ model_s1 = self.model_fn(x_s1, s1)
729
+ x_s2 = (
730
+ (sigma_s2 / sigma_s) * x
731
+ - (alpha_s2 * phi_12) * model_s
732
+ + r2 / r1 * (alpha_s2 * phi_22) * (model_s1 - model_s)
733
+ )
734
+ model_s2 = self.model_fn(x_s2, s2)
735
+ if solver_type == 'dpmsolver':
736
+ x_t = (
737
+ (sigma_t / sigma_s) * x
738
+ - (alpha_t * phi_1) * model_s
739
+ + (1. / r2) * (alpha_t * phi_2) * (model_s2 - model_s)
740
+ )
741
+ elif solver_type == 'taylor':
742
+ D1_0 = (1. / r1) * (model_s1 - model_s)
743
+ D1_1 = (1. / r2) * (model_s2 - model_s)
744
+ D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
745
+ D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
746
+ x_t = (
747
+ (sigma_t / sigma_s) * x
748
+ - (alpha_t * phi_1) * model_s
749
+ + (alpha_t * phi_2) * D1
750
+ - (alpha_t * phi_3) * D2
751
+ )
752
+ else:
753
+ phi_11 = torch.expm1(r1 * h)
754
+ phi_12 = torch.expm1(r2 * h)
755
+ phi_1 = torch.expm1(h)
756
+ phi_22 = torch.expm1(r2 * h) / (r2 * h) - 1.
757
+ phi_2 = phi_1 / h - 1.
758
+ phi_3 = phi_2 / h - 0.5
759
+
760
+ if model_s is None:
761
+ model_s = self.model_fn(x, s)
762
+ if model_s1 is None:
763
+ x_s1 = (
764
+ (torch.exp(log_alpha_s1 - log_alpha_s)) * x
765
+ - (sigma_s1 * phi_11) * model_s
766
+ )
767
+ model_s1 = self.model_fn(x_s1, s1)
768
+ x_s2 = (
769
+ (torch.exp(log_alpha_s2 - log_alpha_s)) * x
770
+ - (sigma_s2 * phi_12) * model_s
771
+ - r2 / r1 * (sigma_s2 * phi_22) * (model_s1 - model_s)
772
+ )
773
+ model_s2 = self.model_fn(x_s2, s2)
774
+ if solver_type == 'dpmsolver':
775
+ x_t = (
776
+ (torch.exp(log_alpha_t - log_alpha_s)) * x
777
+ - (sigma_t * phi_1) * model_s
778
+ - (1. / r2) * (sigma_t * phi_2) * (model_s2 - model_s)
779
+ )
780
+ elif solver_type == 'taylor':
781
+ D1_0 = (1. / r1) * (model_s1 - model_s)
782
+ D1_1 = (1. / r2) * (model_s2 - model_s)
783
+ D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
784
+ D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
785
+ x_t = (
786
+ (torch.exp(log_alpha_t - log_alpha_s)) * x
787
+ - (sigma_t * phi_1) * model_s
788
+ - (sigma_t * phi_2) * D1
789
+ - (sigma_t * phi_3) * D2
790
+ )
791
+
792
+ if return_intermediate:
793
+ return x_t, {'model_s': model_s, 'model_s1': model_s1, 'model_s2': model_s2}
794
+ else:
795
+ return x_t
796
+
797
+ def multistep_dpm_solver_second_update(self, x, model_prev_list, t_prev_list, t, solver_type="dpmsolver"):
798
+ """
799
+ Multistep solver DPM-Solver-2 from time `t_prev_list[-1]` to time `t`.
800
+
801
+ Args:
802
+ x: A pytorch tensor. The initial value at time `s`.
803
+ model_prev_list: A list of pytorch tensor. The previous computed model values.
804
+ t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (1,)
805
+ t: A pytorch tensor. The ending time, with the shape (1,).
806
+ solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
807
+ The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
808
+ Returns:
809
+ x_t: A pytorch tensor. The approximated solution at time `t`.
810
+ """
811
+ if solver_type not in ['dpmsolver', 'taylor']:
812
+ raise ValueError("'solver_type' must be either 'dpmsolver' or 'taylor', got {}".format(solver_type))
813
+ ns = self.noise_schedule
814
+ model_prev_1, model_prev_0 = model_prev_list[-2], model_prev_list[-1]
815
+ t_prev_1, t_prev_0 = t_prev_list[-2], t_prev_list[-1]
816
+ lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t)
817
+ log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
818
+ sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
819
+ alpha_t = torch.exp(log_alpha_t)
820
+
821
+ h_0 = lambda_prev_0 - lambda_prev_1
822
+ h = lambda_t - lambda_prev_0
823
+ r0 = h_0 / h
824
+ D1_0 = (1. / r0) * (model_prev_0 - model_prev_1)
825
+ if self.algorithm_type == "dpmsolver++":
826
+ phi_1 = torch.expm1(-h)
827
+ if solver_type == 'dpmsolver':
828
+ x_t = (
829
+ (sigma_t / sigma_prev_0) * x
830
+ - (alpha_t * phi_1) * model_prev_0
831
+ - 0.5 * (alpha_t * phi_1) * D1_0
832
+ )
833
+ elif solver_type == 'taylor':
834
+ x_t = (
835
+ (sigma_t / sigma_prev_0) * x
836
+ - (alpha_t * phi_1) * model_prev_0
837
+ + (alpha_t * (phi_1 / h + 1.)) * D1_0
838
+ )
839
+ else:
840
+ phi_1 = torch.expm1(h)
841
+ if solver_type == 'dpmsolver':
842
+ x_t = (
843
+ (torch.exp(log_alpha_t - log_alpha_prev_0)) * x
844
+ - (sigma_t * phi_1) * model_prev_0
845
+ - 0.5 * (sigma_t * phi_1) * D1_0
846
+ )
847
+ elif solver_type == 'taylor':
848
+ x_t = (
849
+ (torch.exp(log_alpha_t - log_alpha_prev_0)) * x
850
+ - (sigma_t * phi_1) * model_prev_0
851
+ - (sigma_t * (phi_1 / h - 1.)) * D1_0
852
+ )
853
+ return x_t
854
+
855
+ def multistep_dpm_solver_third_update(self, x, model_prev_list, t_prev_list, t, solver_type='dpmsolver'):
856
+ """
857
+ Multistep solver DPM-Solver-3 from time `t_prev_list[-1]` to time `t`.
858
+
859
+ Args:
860
+ x: A pytorch tensor. The initial value at time `s`.
861
+ model_prev_list: A list of pytorch tensor. The previous computed model values.
862
+ t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (1,)
863
+ t: A pytorch tensor. The ending time, with the shape (1,).
864
+ solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
865
+ The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
866
+ Returns:
867
+ x_t: A pytorch tensor. The approximated solution at time `t`.
868
+ """
869
+ ns = self.noise_schedule
870
+ model_prev_2, model_prev_1, model_prev_0 = model_prev_list
871
+ t_prev_2, t_prev_1, t_prev_0 = t_prev_list
872
+ lambda_prev_2, lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_2), ns.marginal_lambda(t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t)
873
+ log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
874
+ sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
875
+ alpha_t = torch.exp(log_alpha_t)
876
+
877
+ h_1 = lambda_prev_1 - lambda_prev_2
878
+ h_0 = lambda_prev_0 - lambda_prev_1
879
+ h = lambda_t - lambda_prev_0
880
+ r0, r1 = h_0 / h, h_1 / h
881
+ D1_0 = (1. / r0) * (model_prev_0 - model_prev_1)
882
+ D1_1 = (1. / r1) * (model_prev_1 - model_prev_2)
883
+ D1 = D1_0 + (r0 / (r0 + r1)) * (D1_0 - D1_1)
884
+ D2 = (1. / (r0 + r1)) * (D1_0 - D1_1)
885
+ if self.algorithm_type == "dpmsolver++":
886
+ phi_1 = torch.expm1(-h)
887
+ phi_2 = phi_1 / h + 1.
888
+ phi_3 = phi_2 / h - 0.5
889
+ x_t = (
890
+ (sigma_t / sigma_prev_0) * x
891
+ - (alpha_t * phi_1) * model_prev_0
892
+ + (alpha_t * phi_2) * D1
893
+ - (alpha_t * phi_3) * D2
894
+ )
895
+ else:
896
+ phi_1 = torch.expm1(h)
897
+ phi_2 = phi_1 / h - 1.
898
+ phi_3 = phi_2 / h - 0.5
899
+ x_t = (
900
+ (torch.exp(log_alpha_t - log_alpha_prev_0)) * x
901
+ - (sigma_t * phi_1) * model_prev_0
902
+ - (sigma_t * phi_2) * D1
903
+ - (sigma_t * phi_3) * D2
904
+ )
905
+ return x_t
906
+
907
+ def singlestep_dpm_solver_update(self, x, s, t, order, return_intermediate=False, solver_type='dpmsolver', r1=None, r2=None):
908
+ """
909
+ Singlestep DPM-Solver with the order `order` from time `s` to time `t`.
910
+
911
+ Args:
912
+ x: A pytorch tensor. The initial value at time `s`.
913
+ s: A pytorch tensor. The starting time, with the shape (1,).
914
+ t: A pytorch tensor. The ending time, with the shape (1,).
915
+ order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
916
+ return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
917
+ solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
918
+ The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
919
+ r1: A `float`. The hyperparameter of the second-order or third-order solver.
920
+ r2: A `float`. The hyperparameter of the third-order solver.
921
+ Returns:
922
+ x_t: A pytorch tensor. The approximated solution at time `t`.
923
+ """
924
+ if order == 1:
925
+ return self.dpm_solver_first_update(x, s, t, return_intermediate=return_intermediate)
926
+ elif order == 2:
927
+ return self.singlestep_dpm_solver_second_update(x, s, t, return_intermediate=return_intermediate, solver_type=solver_type, r1=r1)
928
+ elif order == 3:
929
+ return self.singlestep_dpm_solver_third_update(x, s, t, return_intermediate=return_intermediate, solver_type=solver_type, r1=r1, r2=r2)
930
+ else:
931
+ raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
932
+
933
+ def multistep_dpm_solver_update(self, x, model_prev_list, t_prev_list, t, order, solver_type='dpmsolver'):
934
+ """
935
+ Multistep DPM-Solver with the order `order` from time `t_prev_list[-1]` to time `t`.
936
+
937
+ Args:
938
+ x: A pytorch tensor. The initial value at time `s`.
939
+ model_prev_list: A list of pytorch tensor. The previous computed model values.
940
+ t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (1,)
941
+ t: A pytorch tensor. The ending time, with the shape (1,).
942
+ order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
943
+ solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
944
+ The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
945
+ Returns:
946
+ x_t: A pytorch tensor. The approximated solution at time `t`.
947
+ """
948
+ if order == 1:
949
+ return self.dpm_solver_first_update(x, t_prev_list[-1], t, model_s=model_prev_list[-1])
950
+ elif order == 2:
951
+ return self.multistep_dpm_solver_second_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
952
+ elif order == 3:
953
+ return self.multistep_dpm_solver_third_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
954
+ else:
955
+ raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
956
+
957
+ def dpm_solver_adaptive(self, x, order, t_T, t_0, h_init=0.05, atol=0.0078, rtol=0.05, theta=0.9, t_err=1e-5, solver_type='dpmsolver'):
958
+ """
959
+ The adaptive step size solver based on singlestep DPM-Solver.
960
+
961
+ Args:
962
+ x: A pytorch tensor. The initial value at time `t_T`.
963
+ order: A `int`. The (higher) order of the solver. We only support order == 2 or 3.
964
+ t_T: A `float`. The starting time of the sampling (default is T).
965
+ t_0: A `float`. The ending time of the sampling (default is epsilon).
966
+ h_init: A `float`. The initial step size (for logSNR).
967
+ atol: A `float`. The absolute tolerance of the solver. For image data, the default setting is 0.0078, followed [1].
968
+ rtol: A `float`. The relative tolerance of the solver. The default setting is 0.05.
969
+ theta: A `float`. The safety hyperparameter for adapting the step size. The default setting is 0.9, followed [1].
970
+ t_err: A `float`. The tolerance for the time. We solve the diffusion ODE until the absolute error between the
971
+ current time and `t_0` is less than `t_err`. The default setting is 1e-5.
972
+ solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
973
+ The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
974
+ Returns:
975
+ x_0: A pytorch tensor. The approximated solution at time `t_0`.
976
+
977
+ [1] A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T. Kachman, and I. Mitliagkas, "Gotta go fast when generating data with score-based models," arXiv preprint arXiv:2105.14080, 2021.
978
+ """
979
+ ns = self.noise_schedule
980
+ s = t_T * torch.ones((1,)).to(x)
981
+ lambda_s = ns.marginal_lambda(s)
982
+ lambda_0 = ns.marginal_lambda(t_0 * torch.ones_like(s).to(x))
983
+ h = h_init * torch.ones_like(s).to(x)
984
+ x_prev = x
985
+ nfe = 0
986
+ if order == 2:
987
+ r1 = 0.5
988
+ lower_update = lambda x, s, t: self.dpm_solver_first_update(x, s, t, return_intermediate=True)
989
+ higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1, solver_type=solver_type, **kwargs)
990
+ elif order == 3:
991
+ r1, r2 = 1. / 3., 2. / 3.
992
+ lower_update = lambda x, s, t: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1, return_intermediate=True, solver_type=solver_type)
993
+ higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_third_update(x, s, t, r1=r1, r2=r2, solver_type=solver_type, **kwargs)
994
+ else:
995
+ raise ValueError("For adaptive step size solver, order must be 2 or 3, got {}".format(order))
996
+ while torch.abs((s - t_0)).mean() > t_err:
997
+ t = ns.inverse_lambda(lambda_s + h)
998
+ x_lower, lower_noise_kwargs = lower_update(x, s, t)
999
+ x_higher = higher_update(x, s, t, **lower_noise_kwargs)
1000
+ delta = torch.max(torch.ones_like(x).to(x) * atol, rtol * torch.max(torch.abs(x_lower), torch.abs(x_prev)))
1001
+ norm_fn = lambda v: torch.sqrt(torch.square(v.reshape((v.shape[0], -1))).mean(dim=-1, keepdim=True))
1002
+ E = norm_fn((x_higher - x_lower) / delta).max()
1003
+ if torch.all(E <= 1.):
1004
+ x = x_higher
1005
+ s = t
1006
+ x_prev = x_lower
1007
+ lambda_s = ns.marginal_lambda(s)
1008
+ h = torch.min(theta * h * torch.float_power(E, -1. / order).float(), lambda_0 - lambda_s)
1009
+ nfe += order
1010
+ print('adaptive solver nfe', nfe)
1011
+ return x
1012
+
1013
+ def add_noise(self, x, t, noise=None):
1014
+ """
1015
+ Compute the noised input xt = alpha_t * x + sigma_t * noise.
1016
+
1017
+ Args:
1018
+ x: A `torch.Tensor` with shape `(batch_size, *shape)`.
1019
+ t: A `torch.Tensor` with shape `(t_size,)`.
1020
+ Returns:
1021
+ xt with shape `(t_size, batch_size, *shape)`.
1022
+ """
1023
+ alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
1024
+ if noise is None:
1025
+ noise = torch.randn((t.shape[0], *x.shape), device=x.device)
1026
+ x = x.reshape((-1, *x.shape))
1027
+ xt = expand_dims(alpha_t, x.dim()) * x + expand_dims(sigma_t, x.dim()) * noise
1028
+ if t.shape[0] == 1:
1029
+ return xt.squeeze(0)
1030
+ else:
1031
+ return xt
1032
+
1033
+ def inverse(self, x, steps=20, t_start=None, t_end=None, order=2, skip_type='time_uniform',
1034
+ method='multistep', lower_order_final=True, denoise_to_zero=False, solver_type='dpmsolver',
1035
+ atol=0.0078, rtol=0.05, return_intermediate=False,
1036
+ ):
1037
+ """
1038
+ Inverse the sample `x` from time `t_start` to `t_end` by DPM-Solver.
1039
+ For discrete-time DPMs, we use `t_start=1/N`, where `N` is the total time steps during training.
1040
+ """
1041
+ t_0 = 1. / self.noise_schedule.total_N if t_start is None else t_start
1042
+ t_T = self.noise_schedule.T if t_end is None else t_end
1043
+ assert t_0 > 0 and t_T > 0, "Time range needs to be greater than 0. For discrete-time DPMs, it needs to be in [1 / N, 1], where N is the length of betas array"
1044
+ return self.sample(x, steps=steps, t_start=t_0, t_end=t_T, order=order, skip_type=skip_type,
1045
+ method=method, lower_order_final=lower_order_final, denoise_to_zero=denoise_to_zero, solver_type=solver_type,
1046
+ atol=atol, rtol=rtol, return_intermediate=return_intermediate)
1047
+
1048
+ def sample(self, x, steps=20, t_start=None, t_end=None, order=2, skip_type='time_uniform',
1049
+ method='multistep', lower_order_final=True, denoise_to_zero=False, solver_type='dpmsolver',
1050
+ atol=0.0078, rtol=0.05, return_intermediate=False,
1051
+ ):
1052
+ """
1053
+ Compute the sample at time `t_end` by DPM-Solver, given the initial `x` at time `t_start`.
1054
+
1055
+ =====================================================
1056
+
1057
+ We support the following algorithms for both noise prediction model and data prediction model:
1058
+ - 'singlestep':
1059
+ Singlestep DPM-Solver (i.e. "DPM-Solver-fast" in the paper), which combines different orders of singlestep DPM-Solver.
1060
+ We combine all the singlestep solvers with order <= `order` to use up all the function evaluations (steps).
1061
+ The total number of function evaluations (NFE) == `steps`.
1062
+ Given a fixed NFE == `steps`, the sampling procedure is:
1063
+ - If `order` == 1:
1064
+ - Denote K = steps. We use K steps of DPM-Solver-1 (i.e. DDIM).
1065
+ - If `order` == 2:
1066
+ - Denote K = (steps // 2) + (steps % 2). We take K intermediate time steps for sampling.
1067
+ - If steps % 2 == 0, we use K steps of singlestep DPM-Solver-2.
1068
+ - If steps % 2 == 1, we use (K - 1) steps of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
1069
+ - If `order` == 3:
1070
+ - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
1071
+ - If steps % 3 == 0, we use (K - 2) steps of singlestep DPM-Solver-3, and 1 step of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
1072
+ - If steps % 3 == 1, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of DPM-Solver-1.
1073
+ - If steps % 3 == 2, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of singlestep DPM-Solver-2.
1074
+ - 'multistep':
1075
+ Multistep DPM-Solver with the order of `order`. The total number of function evaluations (NFE) == `steps`.
1076
+ We initialize the first `order` values by lower order multistep solvers.
1077
+ Given a fixed NFE == `steps`, the sampling procedure is:
1078
+ Denote K = steps.
1079
+ - If `order` == 1:
1080
+ - We use K steps of DPM-Solver-1 (i.e. DDIM).
1081
+ - If `order` == 2:
1082
+ - We firstly use 1 step of DPM-Solver-1, then use (K - 1) step of multistep DPM-Solver-2.
1083
+ - If `order` == 3:
1084
+ - We firstly use 1 step of DPM-Solver-1, then 1 step of multistep DPM-Solver-2, then (K - 2) step of multistep DPM-Solver-3.
1085
+ - 'singlestep_fixed':
1086
+ Fixed order singlestep DPM-Solver (i.e. DPM-Solver-1 or singlestep DPM-Solver-2 or singlestep DPM-Solver-3).
1087
+ We use singlestep DPM-Solver-`order` for `order`=1 or 2 or 3, with total [`steps` // `order`] * `order` NFE.
1088
+ - 'adaptive':
1089
+ Adaptive step size DPM-Solver (i.e. "DPM-Solver-12" and "DPM-Solver-23" in the paper).
1090
+ We ignore `steps` and use adaptive step size DPM-Solver with a higher order of `order`.
1091
+ You can adjust the absolute tolerance `atol` and the relative tolerance `rtol` to balance the computatation costs
1092
+ (NFE) and the sample quality.
1093
+ - If `order` == 2, we use DPM-Solver-12 which combines DPM-Solver-1 and singlestep DPM-Solver-2.
1094
+ - If `order` == 3, we use DPM-Solver-23 which combines singlestep DPM-Solver-2 and singlestep DPM-Solver-3.
1095
+
1096
+ =====================================================
1097
+
1098
+ Some advices for choosing the algorithm:
1099
+ - For **unconditional sampling** or **guided sampling with small guidance scale** by DPMs:
1100
+ Use singlestep DPM-Solver or DPM-Solver++ ("DPM-Solver-fast" in the paper) with `order = 3`.
1101
+ e.g., DPM-Solver:
1102
+ >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver")
1103
+ >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3,
1104
+ skip_type='time_uniform', method='singlestep')
1105
+ e.g., DPM-Solver++:
1106
+ >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver++")
1107
+ >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3,
1108
+ skip_type='time_uniform', method='singlestep')
1109
+ - For **guided sampling with large guidance scale** by DPMs:
1110
+ Use multistep DPM-Solver with `algorithm_type="dpmsolver++"` and `order = 2`.
1111
+ e.g.
1112
+ >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver++")
1113
+ >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=2,
1114
+ skip_type='time_uniform', method='multistep')
1115
+
1116
+ We support three types of `skip_type`:
1117
+ - 'logSNR': uniform logSNR for the time steps. **Recommended for low-resolutional images**
1118
+ - 'time_uniform': uniform time for the time steps. **Recommended for high-resolutional images**.
1119
+ - 'time_quadratic': quadratic time for the time steps.
1120
+
1121
+ =====================================================
1122
+ Args:
1123
+ x: A pytorch tensor. The initial value at time `t_start`
1124
+ e.g. if `t_start` == T, then `x` is a sample from the standard normal distribution.
1125
+ steps: A `int`. The total number of function evaluations (NFE).
1126
+ t_start: A `float`. The starting time of the sampling.
1127
+ If `T` is None, we use self.noise_schedule.T (default is 1.0).
1128
+ t_end: A `float`. The ending time of the sampling.
1129
+ If `t_end` is None, we use 1. / self.noise_schedule.total_N.
1130
+ e.g. if total_N == 1000, we have `t_end` == 1e-3.
1131
+ For discrete-time DPMs:
1132
+ - We recommend `t_end` == 1. / self.noise_schedule.total_N.
1133
+ For continuous-time DPMs:
1134
+ - We recommend `t_end` == 1e-3 when `steps` <= 15; and `t_end` == 1e-4 when `steps` > 15.
1135
+ order: A `int`. The order of DPM-Solver.
1136
+ skip_type: A `str`. The type for the spacing of the time steps. 'time_uniform' or 'logSNR' or 'time_quadratic'.
1137
+ method: A `str`. The method for sampling. 'singlestep' or 'multistep' or 'singlestep_fixed' or 'adaptive'.
1138
+ denoise_to_zero: A `bool`. Whether to denoise to time 0 at the final step.
1139
+ Default is `False`. If `denoise_to_zero` is `True`, the total NFE is (`steps` + 1).
1140
+
1141
+ This trick is firstly proposed by DDPM (https://arxiv.org/abs/2006.11239) and
1142
+ score_sde (https://arxiv.org/abs/2011.13456). Such trick can improve the FID
1143
+ for diffusion models sampling by diffusion SDEs for low-resolutional images
1144
+ (such as CIFAR-10). However, we observed that such trick does not matter for
1145
+ high-resolutional images. As it needs an additional NFE, we do not recommend
1146
+ it for high-resolutional images.
1147
+ lower_order_final: A `bool`. Whether to use lower order solvers at the final steps.
1148
+ Only valid for `method=multistep` and `steps < 15`. We empirically find that
1149
+ this trick is a key to stabilizing the sampling by DPM-Solver with very few steps
1150
+ (especially for steps <= 10). So we recommend to set it to be `True`.
1151
+ solver_type: A `str`. The taylor expansion type for the solver. `dpmsolver` or `taylor`. We recommend `dpmsolver`.
1152
+ atol: A `float`. The absolute tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
1153
+ rtol: A `float`. The relative tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
1154
+ return_intermediate: A `bool`. Whether to save the xt at each step.
1155
+ When set to `True`, method returns a tuple (x0, intermediates); when set to False, method returns only x0.
1156
+ Returns:
1157
+ x_end: A pytorch tensor. The approximated solution at time `t_end`.
1158
+
1159
+ """
1160
+ t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
1161
+ t_T = self.noise_schedule.T if t_start is None else t_start
1162
+ assert t_0 > 0 and t_T > 0, "Time range needs to be greater than 0. For discrete-time DPMs, it needs to be in [1 / N, 1], where N is the length of betas array"
1163
+ if return_intermediate:
1164
+ assert method in ['multistep', 'singlestep', 'singlestep_fixed'], "Cannot use adaptive solver when saving intermediate values"
1165
+ if self.correcting_xt_fn is not None:
1166
+ assert method in ['multistep', 'singlestep', 'singlestep_fixed'], "Cannot use adaptive solver when correcting_xt_fn is not None"
1167
+ device = x.device
1168
+ intermediates = []
1169
+ with torch.no_grad():
1170
+ if method == 'adaptive':
1171
+ x = self.dpm_solver_adaptive(x, order=order, t_T=t_T, t_0=t_0, atol=atol, rtol=rtol, solver_type=solver_type)
1172
+ elif method == 'multistep':
1173
+ assert steps >= order
1174
+ timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
1175
+ assert timesteps.shape[0] - 1 == steps
1176
+ # Init the initial values.
1177
+ step = 0
1178
+ t = timesteps[step]
1179
+ t_prev_list = [t]
1180
+ model_prev_list = [self.model_fn(x, t)]
1181
+ if self.correcting_xt_fn is not None:
1182
+ x = self.correcting_xt_fn(x, t, step)
1183
+ if return_intermediate:
1184
+ intermediates.append(x)
1185
+ # Init the first `order` values by lower order multistep DPM-Solver.
1186
+ for step in range(1, order):
1187
+ t = timesteps[step]
1188
+ x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, t, step, solver_type=solver_type)
1189
+ if self.correcting_xt_fn is not None:
1190
+ x = self.correcting_xt_fn(x, t, step)
1191
+ if return_intermediate:
1192
+ intermediates.append(x)
1193
+ t_prev_list.append(t)
1194
+ model_prev_list.append(self.model_fn(x, t))
1195
+ # Compute the remaining values by `order`-th order multistep DPM-Solver.
1196
+ for step in range(order, steps + 1):
1197
+ t = timesteps[step]
1198
+ # We only use lower order for steps < 10
1199
+ if lower_order_final and steps < 10:
1200
+ step_order = min(order, steps + 1 - step)
1201
+ else:
1202
+ step_order = order
1203
+ x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, t, step_order, solver_type=solver_type)
1204
+ if self.correcting_xt_fn is not None:
1205
+ x = self.correcting_xt_fn(x, t, step)
1206
+ if return_intermediate:
1207
+ intermediates.append(x)
1208
+ for i in range(order - 1):
1209
+ t_prev_list[i] = t_prev_list[i + 1]
1210
+ model_prev_list[i] = model_prev_list[i + 1]
1211
+ t_prev_list[-1] = t
1212
+ # We do not need to evaluate the final model value.
1213
+ if step < steps:
1214
+ model_prev_list[-1] = self.model_fn(x, t)
1215
+ elif method in ['singlestep', 'singlestep_fixed']:
1216
+ if method == 'singlestep':
1217
+ timesteps_outer, orders = self.get_orders_and_timesteps_for_singlestep_solver(steps=steps, order=order, skip_type=skip_type, t_T=t_T, t_0=t_0, device=device)
1218
+ elif method == 'singlestep_fixed':
1219
+ K = steps // order
1220
+ orders = [order,] * K
1221
+ timesteps_outer = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=K, device=device)
1222
+ for step, order in enumerate(orders):
1223
+ s, t = timesteps_outer[step], timesteps_outer[step + 1]
1224
+ timesteps_inner = self.get_time_steps(skip_type=skip_type, t_T=s.item(), t_0=t.item(), N=order, device=device)
1225
+ lambda_inner = self.noise_schedule.marginal_lambda(timesteps_inner)
1226
+ h = lambda_inner[-1] - lambda_inner[0]
1227
+ r1 = None if order <= 1 else (lambda_inner[1] - lambda_inner[0]) / h
1228
+ r2 = None if order <= 2 else (lambda_inner[2] - lambda_inner[0]) / h
1229
+ x = self.singlestep_dpm_solver_update(x, s, t, order, solver_type=solver_type, r1=r1, r2=r2)
1230
+ if self.correcting_xt_fn is not None:
1231
+ x = self.correcting_xt_fn(x, t, step)
1232
+ if return_intermediate:
1233
+ intermediates.append(x)
1234
+ else:
1235
+ raise ValueError("Got wrong method {}".format(method))
1236
+ if denoise_to_zero:
1237
+ t = torch.ones((1,)).to(device) * t_0
1238
+ x = self.denoise_to_zero_fn(x, t)
1239
+ if self.correcting_xt_fn is not None:
1240
+ x = self.correcting_xt_fn(x, t, step + 1)
1241
+ if return_intermediate:
1242
+ intermediates.append(x)
1243
+ if return_intermediate:
1244
+ return x, intermediates
1245
+ else:
1246
+ return x
1247
+
1248
+
1249
+
1250
+ #############################################################
1251
+ # other utility functions
1252
+ #############################################################
1253
+
1254
+ def interpolate_fn(x, xp, yp):
1255
+ """
1256
+ A piecewise linear function y = f(x), using xp and yp as keypoints.
1257
+ We implement f(x) in a differentiable way (i.e. applicable for autograd).
1258
+ The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
1259
+
1260
+ Args:
1261
+ x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
1262
+ xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
1263
+ yp: PyTorch tensor with shape [C, K].
1264
+ Returns:
1265
+ The function values f(x), with shape [N, C].
1266
+ """
1267
+ N, K = x.shape[0], xp.shape[1]
1268
+ all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
1269
+ sorted_all_x, x_indices = torch.sort(all_x, dim=2)
1270
+ x_idx = torch.argmin(x_indices, dim=2)
1271
+ cand_start_idx = x_idx - 1
1272
+ start_idx = torch.where(
1273
+ torch.eq(x_idx, 0),
1274
+ torch.tensor(1, device=x.device),
1275
+ torch.where(
1276
+ torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
1277
+ ),
1278
+ )
1279
+ end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
1280
+ start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
1281
+ end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
1282
+ start_idx2 = torch.where(
1283
+ torch.eq(x_idx, 0),
1284
+ torch.tensor(0, device=x.device),
1285
+ torch.where(
1286
+ torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
1287
+ ),
1288
+ )
1289
+ y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
1290
+ start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
1291
+ end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
1292
+ cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
1293
+ return cand
1294
+
1295
+
1296
+ def expand_dims(v, dims):
1297
+ """
1298
+ Expand the tensor `v` to the dim `dims`.
1299
+
1300
+ Args:
1301
+ `v`: a PyTorch tensor with shape [N].
1302
+ `dim`: a `int`.
1303
+ Returns:
1304
+ a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
1305
+ """
1306
+ return v[(...,) + (None,)*(dims - 1)]
experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/core/dpm_solver_pytorch_no_noise.py ADDED
@@ -0,0 +1,1306 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn.functional as F
3
+ import math
4
+
5
+
6
+ class NoiseScheduleVP:
7
+ def __init__(
8
+ self,
9
+ schedule='discrete',
10
+ betas=None,
11
+ alphas_cumprod=None,
12
+ continuous_beta_0=0.1,
13
+ continuous_beta_1=20.,
14
+ dtype=torch.float32,
15
+ ):
16
+ """Create a wrapper class for the forward SDE (VP type).
17
+
18
+ ***
19
+ Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
20
+ We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
21
+ ***
22
+
23
+ The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
24
+ We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
25
+ Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
26
+
27
+ log_alpha_t = self.marginal_log_mean_coeff(t)
28
+ sigma_t = self.marginal_std(t)
29
+ lambda_t = self.marginal_lambda(t)
30
+
31
+ Moreover, as lambda(t) is an invertible function, we also support its inverse function:
32
+
33
+ t = self.inverse_lambda(lambda_t)
34
+
35
+ ===============================================================
36
+
37
+ We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
38
+
39
+ 1. For discrete-time DPMs:
40
+
41
+ For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
42
+ t_i = (i + 1) / N
43
+ e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
44
+ We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
45
+
46
+ Args:
47
+ betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
48
+ alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
49
+
50
+ Note that we always have alphas_cumprod = cumprod(1 - betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
51
+
52
+ **Important**: Please pay special attention for the args for `alphas_cumprod`:
53
+ The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
54
+ q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
55
+ Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
56
+ alpha_{t_n} = \sqrt{\hat{alpha_n}},
57
+ and
58
+ log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
59
+
60
+
61
+ 2. For continuous-time DPMs:
62
+
63
+ We support the linear VPSDE for the continuous time setting. The hyperparameters for the noise
64
+ schedule are the default settings in Yang Song's ScoreSDE:
65
+
66
+ Args:
67
+ beta_min: A `float` number. The smallest beta for the linear schedule.
68
+ beta_max: A `float` number. The largest beta for the linear schedule.
69
+ T: A `float` number. The ending time of the forward process.
70
+
71
+ ===============================================================
72
+
73
+ Args:
74
+ schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
75
+ 'linear' for continuous-time DPMs.
76
+ Returns:
77
+ A wrapper object of the forward SDE (VP type).
78
+
79
+ ===============================================================
80
+
81
+ Example:
82
+
83
+ # For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
84
+ >>> ns = NoiseScheduleVP('discrete', betas=betas)
85
+
86
+ # For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
87
+ >>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
88
+
89
+ # For continuous-time DPMs (VPSDE), linear schedule:
90
+ >>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
91
+
92
+ """
93
+
94
+ if schedule not in ['discrete', 'linear']:
95
+ raise ValueError("Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear'".format(schedule))
96
+
97
+ self.schedule = schedule
98
+ if schedule == 'discrete':
99
+ if betas is not None:
100
+ log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
101
+ else:
102
+ assert alphas_cumprod is not None
103
+ log_alphas = 0.5 * torch.log(alphas_cumprod)
104
+ self.T = 1.
105
+ self.log_alpha_array = self.numerical_clip_alpha(log_alphas).reshape((1, -1,)).to(dtype=dtype)
106
+ self.total_N = self.log_alpha_array.shape[1]
107
+ self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1)).to(dtype=dtype)
108
+ else:
109
+ self.T = 1.
110
+ self.total_N = 1000
111
+ self.beta_0 = continuous_beta_0
112
+ self.beta_1 = continuous_beta_1
113
+
114
+ def numerical_clip_alpha(self, log_alphas, clipped_lambda=-5.1):
115
+ """
116
+ For some beta schedules such as cosine schedule, the log-SNR has numerical isssues.
117
+ We clip the log-SNR near t=T within -5.1 to ensure the stability.
118
+ Such a trick is very useful for diffusion models with the cosine schedule, such as i-DDPM, guided-diffusion and GLIDE.
119
+ """
120
+ log_sigmas = 0.5 * torch.log(1. - torch.exp(2. * log_alphas))
121
+ lambs = log_alphas - log_sigmas
122
+ idx = torch.searchsorted(torch.flip(lambs, [0]), clipped_lambda)
123
+ if idx > 0:
124
+ log_alphas = log_alphas[:-idx]
125
+ return log_alphas
126
+
127
+ def marginal_log_mean_coeff(self, t):
128
+ """
129
+ Compute log(alpha_t) of a given continuous-time label t in [0, T].
130
+ """
131
+ if self.schedule == 'discrete':
132
+ return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device), self.log_alpha_array.to(t.device)).reshape((-1))
133
+ elif self.schedule == 'linear':
134
+ return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
135
+
136
+ def marginal_alpha(self, t):
137
+ """
138
+ Compute alpha_t of a given continuous-time label t in [0, T].
139
+ """
140
+ return torch.exp(self.marginal_log_mean_coeff(t))
141
+
142
+ def marginal_std(self, t):
143
+ """
144
+ Compute sigma_t of a given continuous-time label t in [0, T].
145
+ """
146
+ return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
147
+
148
+ def marginal_lambda(self, t):
149
+ """
150
+ Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
151
+ """
152
+ log_mean_coeff = self.marginal_log_mean_coeff(t)
153
+ log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
154
+ return log_mean_coeff - log_std
155
+
156
+ def inverse_lambda(self, lamb):
157
+ """
158
+ Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
159
+ """
160
+ if self.schedule == 'linear':
161
+ tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
162
+ Delta = self.beta_0**2 + tmp
163
+ return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
164
+ elif self.schedule == 'discrete':
165
+ log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
166
+ t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]), torch.flip(self.t_array.to(lamb.device), [1]))
167
+ return t.reshape((-1,))
168
+
169
+
170
+ def model_wrapper(
171
+ model,
172
+ noise_schedule,
173
+ model_type="noise",
174
+ model_kwargs={},
175
+ guidance_type="uncond",
176
+ condition=None,
177
+ unconditional_condition=None,
178
+ guidance_scale=1.,
179
+ classifier_fn=None,
180
+ classifier_kwargs={},
181
+ ):
182
+ """Create a wrapper function for the noise prediction model.
183
+
184
+ DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
185
+ firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
186
+
187
+ We support four types of the diffusion model by setting `model_type`:
188
+
189
+ 1. "noise": noise prediction model. (Trained by predicting noise).
190
+
191
+ 2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
192
+
193
+ 3. "v": velocity prediction model. (Trained by predicting the velocity).
194
+ The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
195
+
196
+ [1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
197
+ arXiv preprint arXiv:2202.00512 (2022).
198
+ [2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
199
+ arXiv preprint arXiv:2210.02303 (2022).
200
+
201
+ 4. "score": marginal score function. (Trained by denoising score matching).
202
+ Note that the score function and the noise prediction model follows a simple relationship:
203
+ ```
204
+ noise(x_t, t) = -sigma_t * score(x_t, t)
205
+ ```
206
+
207
+ We support three types of guided sampling by DPMs by setting `guidance_type`:
208
+ 1. "uncond": unconditional sampling by DPMs.
209
+ The input `model` has the following format:
210
+ ``
211
+ model(x, t_input, **model_kwargs) -> noise | x_start | v | score
212
+ ``
213
+
214
+ 2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
215
+ The input `model` has the following format:
216
+ ``
217
+ model(x, t_input, **model_kwargs) -> noise | x_start | v | score
218
+ ``
219
+
220
+ The input `classifier_fn` has the following format:
221
+ ``
222
+ classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
223
+ ``
224
+
225
+ [3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
226
+ in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
227
+
228
+ 3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
229
+ The input `model` has the following format:
230
+ ``
231
+ model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
232
+ ``
233
+ And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
234
+
235
+ [4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
236
+ arXiv preprint arXiv:2207.12598 (2022).
237
+
238
+
239
+ The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
240
+ or continuous-time labels (i.e. epsilon to T).
241
+
242
+ We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
243
+ ``
244
+ def model_fn(x, t_continuous) -> noise:
245
+ t_input = get_model_input_time(t_continuous)
246
+ return noise_pred(model, x, t_input, **model_kwargs)
247
+ ``
248
+ where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
249
+
250
+ ===============================================================
251
+
252
+ Args:
253
+ model: A diffusion model with the corresponding format described above.
254
+ noise_schedule: A noise schedule object, such as NoiseScheduleVP.
255
+ model_type: A `str`. The parameterization type of the diffusion model.
256
+ "noise" or "x_start" or "v" or "score".
257
+ model_kwargs: A `dict`. A dict for the other inputs of the model function.
258
+ guidance_type: A `str`. The type of the guidance for sampling.
259
+ "uncond" or "classifier" or "classifier-free".
260
+ condition: A pytorch tensor. The condition for the guided sampling.
261
+ Only used for "classifier" or "classifier-free" guidance type.
262
+ unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
263
+ Only used for "classifier-free" guidance type.
264
+ guidance_scale: A `float`. The scale for the guided sampling.
265
+ classifier_fn: A classifier function. Only used for the classifier guidance.
266
+ classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
267
+ Returns:
268
+ A noise prediction model that accepts the noised data and the continuous time as the inputs.
269
+ """
270
+
271
+ def get_model_input_time(t_continuous):
272
+ """
273
+ Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
274
+ For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
275
+ For continuous-time DPMs, we just use `t_continuous`.
276
+ """
277
+ if noise_schedule.schedule == 'discrete':
278
+ return (t_continuous - 1. / noise_schedule.total_N) * 1000.
279
+ else:
280
+ return t_continuous
281
+
282
+ def noise_pred_fn(x, t_continuous, cond=None):
283
+ t_input = get_model_input_time(t_continuous)
284
+ if cond is None:
285
+ output = model(x, t_input, **model_kwargs)
286
+ else:
287
+ # output = model(x, t_input, cond, **model_kwargs) zxc
288
+ output = model(cond, t_input, **model_kwargs)
289
+ if model_type == "noise":
290
+ return output
291
+ elif model_type == "x_start":
292
+ alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
293
+ return (x - alpha_t * output) / sigma_t
294
+ elif model_type == "v":
295
+ alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
296
+ return alpha_t * output + sigma_t * x
297
+ elif model_type == "score":
298
+ sigma_t = noise_schedule.marginal_std(t_continuous)
299
+ return -sigma_t * output
300
+
301
+ def cond_grad_fn(x, t_input):
302
+ """
303
+ Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
304
+ """
305
+ with torch.enable_grad():
306
+ x_in = x.detach().requires_grad_(True)
307
+ log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
308
+ return torch.autograd.grad(log_prob.sum(), x_in)[0]
309
+
310
+ def model_fn(x, t_continuous):
311
+ """
312
+ The noise predicition model function that is used for DPM-Solver.
313
+ """
314
+ if guidance_type == "uncond":
315
+ return noise_pred_fn(x, t_continuous)
316
+ elif guidance_type == "classifier":
317
+ assert classifier_fn is not None
318
+ t_input = get_model_input_time(t_continuous)
319
+ cond_grad = cond_grad_fn(x, t_input)
320
+ sigma_t = noise_schedule.marginal_std(t_continuous)
321
+ noise = noise_pred_fn(x, t_continuous)
322
+ return noise - guidance_scale * expand_dims(sigma_t, x.dim()) * cond_grad
323
+ elif guidance_type == "classifier-free":
324
+ if guidance_scale == 1. or unconditional_condition is None:
325
+ return noise_pred_fn(x, t_continuous, cond=condition)
326
+ else:
327
+ x_in = torch.cat([x] * 2)
328
+ t_in = torch.cat([t_continuous] * 2)
329
+ c_in = torch.cat([unconditional_condition, condition])
330
+ noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
331
+ return noise_uncond + guidance_scale * (noise - noise_uncond)
332
+
333
+ assert model_type in ["noise", "x_start", "v", "score"]
334
+ assert guidance_type in ["uncond", "classifier", "classifier-free"]
335
+ return model_fn
336
+
337
+
338
+ class DPM_Solver:
339
+ def __init__(
340
+ self,
341
+ model_fn,
342
+ noise_schedule,
343
+ algorithm_type="dpmsolver++",
344
+ correcting_x0_fn=None,
345
+ correcting_xt_fn=None,
346
+ thresholding_max_val=1.,
347
+ dynamic_thresholding_ratio=0.995,
348
+ ):
349
+ """Construct a DPM-Solver.
350
+
351
+ We support both DPM-Solver (`algorithm_type="dpmsolver"`) and DPM-Solver++ (`algorithm_type="dpmsolver++"`).
352
+
353
+ We also support the "dynamic thresholding" method in Imagen[1]. For pixel-space diffusion models, you
354
+ can set both `algorithm_type="dpmsolver++"` and `correcting_x0_fn="dynamic_thresholding"` to use the
355
+ dynamic thresholding. The "dynamic thresholding" can greatly improve the sample quality for pixel-space
356
+ DPMs with large guidance scales. Note that the thresholding method is **unsuitable** for latent-space
357
+ DPMs (such as stable-diffusion).
358
+
359
+ To support advanced algorithms in image-to-image applications, we also support corrector functions for
360
+ both x0 and xt.
361
+
362
+ Args:
363
+ model_fn: A noise prediction model function which accepts the continuous-time input (t in [epsilon, T]):
364
+ ``
365
+ def model_fn(x, t_continuous):
366
+ return noise
367
+ ``
368
+ The shape of `x` is `(batch_size, **shape)`, and the shape of `t_continuous` is `(batch_size,)`.
369
+ noise_schedule: A noise schedule object, such as NoiseScheduleVP.
370
+ algorithm_type: A `str`. Either "dpmsolver" or "dpmsolver++".
371
+ correcting_x0_fn: A `str` or a function with the following format:
372
+ ```
373
+ def correcting_x0_fn(x0, t):
374
+ x0_new = ...
375
+ return x0_new
376
+ ```
377
+ This function is to correct the outputs of the data prediction model at each sampling step. e.g.,
378
+ ```
379
+ x0_pred = data_pred_model(xt, t)
380
+ if correcting_x0_fn is not None:
381
+ x0_pred = correcting_x0_fn(x0_pred, t)
382
+ xt_1 = update(x0_pred, xt, t)
383
+ ```
384
+ If `correcting_x0_fn="dynamic_thresholding"`, we use the dynamic thresholding proposed in Imagen[1].
385
+ correcting_xt_fn: A function with the following format:
386
+ ```
387
+ def correcting_xt_fn(xt, t, step):
388
+ x_new = ...
389
+ return x_new
390
+ ```
391
+ This function is to correct the intermediate samples xt at each sampling step. e.g.,
392
+ ```
393
+ xt = ...
394
+ xt = correcting_xt_fn(xt, t, step)
395
+ ```
396
+ thresholding_max_val: A `float`. The max value for thresholding.
397
+ Valid only when use `dpmsolver++` and `correcting_x0_fn="dynamic_thresholding"`.
398
+ dynamic_thresholding_ratio: A `float`. The ratio for dynamic thresholding (see Imagen[1] for details).
399
+ Valid only when use `dpmsolver++` and `correcting_x0_fn="dynamic_thresholding"`.
400
+
401
+ [1] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour,
402
+ Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-image diffusion models
403
+ with deep language understanding. arXiv preprint arXiv:2205.11487, 2022b.
404
+ """
405
+ self.model = lambda x, t: model_fn(x, t.expand((x.shape[0])))
406
+ self.noise_schedule = noise_schedule
407
+ assert algorithm_type in ["dpmsolver", "dpmsolver++"]
408
+ self.algorithm_type = algorithm_type
409
+ if correcting_x0_fn == "dynamic_thresholding":
410
+ self.correcting_x0_fn = self.dynamic_thresholding_fn
411
+ else:
412
+ self.correcting_x0_fn = correcting_x0_fn
413
+ self.correcting_xt_fn = correcting_xt_fn
414
+ self.dynamic_thresholding_ratio = dynamic_thresholding_ratio
415
+ self.thresholding_max_val = thresholding_max_val
416
+
417
+ def dynamic_thresholding_fn(self, x0, t):
418
+ """
419
+ The dynamic thresholding method.
420
+ """
421
+ dims = x0.dim()
422
+ p = self.dynamic_thresholding_ratio
423
+ s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
424
+ s = expand_dims(torch.maximum(s, self.thresholding_max_val * torch.ones_like(s).to(s.device)), dims)
425
+ x0 = torch.clamp(x0, -s, s) / s
426
+ return x0
427
+
428
+ def noise_prediction_fn(self, x, t):
429
+ """
430
+ Return the noise prediction model.
431
+ """
432
+ return self.model(x, t)
433
+
434
+ def data_prediction_fn(self, x, t):
435
+ """
436
+ Return the data prediction model (with corrector).
437
+ """
438
+ noise = self.noise_prediction_fn(x, t)
439
+ alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
440
+ x0 = (x - sigma_t * noise) / alpha_t
441
+ if self.correcting_x0_fn is not None:
442
+ x0 = self.correcting_x0_fn(x0, t)
443
+ return x0
444
+
445
+ def model_fn(self, x, t):
446
+ """
447
+ Convert the model to the noise prediction model or the data prediction model.
448
+ """
449
+ if self.algorithm_type == "dpmsolver++":
450
+ return self.data_prediction_fn(x, t)
451
+ else:
452
+ return self.noise_prediction_fn(x, t)
453
+
454
+ def get_time_steps(self, skip_type, t_T, t_0, N, device):
455
+ """Compute the intermediate time steps for sampling.
456
+
457
+ Args:
458
+ skip_type: A `str`. The type for the spacing of the time steps. We support three types:
459
+ - 'logSNR': uniform logSNR for the time steps.
460
+ - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
461
+ - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
462
+ t_T: A `float`. The starting time of the sampling (default is T).
463
+ t_0: A `float`. The ending time of the sampling (default is epsilon).
464
+ N: A `int`. The total number of the spacing of the time steps.
465
+ device: A torch device.
466
+ Returns:
467
+ A pytorch tensor of the time steps, with the shape (N + 1,).
468
+ """
469
+ if skip_type == 'logSNR':
470
+ lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
471
+ lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
472
+ logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
473
+ return self.noise_schedule.inverse_lambda(logSNR_steps)
474
+ elif skip_type == 'time_uniform':
475
+ return torch.linspace(t_T, t_0, N + 1).to(device)
476
+ elif skip_type == 'time_quadratic':
477
+ t_order = 2
478
+ t = torch.linspace(t_T**(1. / t_order), t_0**(1. / t_order), N + 1).pow(t_order).to(device)
479
+ return t
480
+ else:
481
+ raise ValueError("Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type))
482
+
483
+ def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
484
+ """
485
+ Get the order of each step for sampling by the singlestep DPM-Solver.
486
+
487
+ We combine both DPM-Solver-1,2,3 to use all the function evaluations, which is named as "DPM-Solver-fast".
488
+ Given a fixed number of function evaluations by `steps`, the sampling procedure by DPM-Solver-fast is:
489
+ - If order == 1:
490
+ We take `steps` of DPM-Solver-1 (i.e. DDIM).
491
+ - If order == 2:
492
+ - Denote K = (steps // 2). We take K or (K + 1) intermediate time steps for sampling.
493
+ - If steps % 2 == 0, we use K steps of DPM-Solver-2.
494
+ - If steps % 2 == 1, we use K steps of DPM-Solver-2 and 1 step of DPM-Solver-1.
495
+ - If order == 3:
496
+ - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
497
+ - If steps % 3 == 0, we use (K - 2) steps of DPM-Solver-3, and 1 step of DPM-Solver-2 and 1 step of DPM-Solver-1.
498
+ - If steps % 3 == 1, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-1.
499
+ - If steps % 3 == 2, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-2.
500
+
501
+ ============================================
502
+ Args:
503
+ order: A `int`. The max order for the solver (2 or 3).
504
+ steps: A `int`. The total number of function evaluations (NFE).
505
+ skip_type: A `str`. The type for the spacing of the time steps. We support three types:
506
+ - 'logSNR': uniform logSNR for the time steps.
507
+ - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
508
+ - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
509
+ t_T: A `float`. The starting time of the sampling (default is T).
510
+ t_0: A `float`. The ending time of the sampling (default is epsilon).
511
+ device: A torch device.
512
+ Returns:
513
+ orders: A list of the solver order of each step.
514
+ """
515
+ if order == 3:
516
+ K = steps // 3 + 1
517
+ if steps % 3 == 0:
518
+ orders = [3,] * (K - 2) + [2, 1]
519
+ elif steps % 3 == 1:
520
+ orders = [3,] * (K - 1) + [1]
521
+ else:
522
+ orders = [3,] * (K - 1) + [2]
523
+ elif order == 2:
524
+ if steps % 2 == 0:
525
+ K = steps // 2
526
+ orders = [2,] * K
527
+ else:
528
+ K = steps // 2 + 1
529
+ orders = [2,] * (K - 1) + [1]
530
+ elif order == 1:
531
+ K = 1
532
+ orders = [1,] * steps
533
+ else:
534
+ raise ValueError("'order' must be '1' or '2' or '3'.")
535
+ if skip_type == 'logSNR':
536
+ # To reproduce the results in DPM-Solver paper
537
+ timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
538
+ else:
539
+ timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[torch.cumsum(torch.tensor([0,] + orders), 0).to(device)]
540
+ return timesteps_outer, orders
541
+
542
+ def denoise_to_zero_fn(self, x, s):
543
+ """
544
+ Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
545
+ """
546
+ return self.data_prediction_fn(x, s)
547
+
548
+ def dpm_solver_first_update(self, x, s, t, model_s=None, return_intermediate=False):
549
+ """
550
+ DPM-Solver-1 (equivalent to DDIM) from time `s` to time `t`.
551
+
552
+ Args:
553
+ x: A pytorch tensor. The initial value at time `s`.
554
+ s: A pytorch tensor. The starting time, with the shape (1,).
555
+ t: A pytorch tensor. The ending time, with the shape (1,).
556
+ model_s: A pytorch tensor. The model function evaluated at time `s`.
557
+ If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
558
+ return_intermediate: A `bool`. If true, also return the model value at time `s`.
559
+ Returns:
560
+ x_t: A pytorch tensor. The approximated solution at time `t`.
561
+ """
562
+ ns = self.noise_schedule
563
+ dims = x.dim()
564
+ lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
565
+ h = lambda_t - lambda_s
566
+ log_alpha_s, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(t)
567
+ sigma_s, sigma_t = ns.marginal_std(s), ns.marginal_std(t)
568
+ alpha_t = torch.exp(log_alpha_t)
569
+
570
+ if self.algorithm_type == "dpmsolver++":
571
+ phi_1 = torch.expm1(-h)
572
+ if model_s is None:
573
+ model_s = self.model_fn(x, s)
574
+ x_t = (
575
+ sigma_t / sigma_s * x
576
+ - alpha_t * phi_1 * model_s
577
+ )
578
+ if return_intermediate:
579
+ return x_t, {'model_s': model_s}
580
+ else:
581
+ return x_t
582
+ else:
583
+ phi_1 = torch.expm1(h)
584
+ if model_s is None:
585
+ model_s = self.model_fn(x, s)
586
+ x_t = (
587
+ torch.exp(log_alpha_t - log_alpha_s) * x
588
+ - (sigma_t * phi_1) * model_s
589
+ )
590
+ if return_intermediate:
591
+ return x_t, {'model_s': model_s}
592
+ else:
593
+ return x_t
594
+
595
+ def singlestep_dpm_solver_second_update(self, x, s, t, r1=0.5, model_s=None, return_intermediate=False, solver_type='dpmsolver'):
596
+ """
597
+ Singlestep solver DPM-Solver-2 from time `s` to time `t`.
598
+
599
+ Args:
600
+ x: A pytorch tensor. The initial value at time `s`.
601
+ s: A pytorch tensor. The starting time, with the shape (1,).
602
+ t: A pytorch tensor. The ending time, with the shape (1,).
603
+ r1: A `float`. The hyperparameter of the second-order solver.
604
+ model_s: A pytorch tensor. The model function evaluated at time `s`.
605
+ If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
606
+ return_intermediate: A `bool`. If true, also return the model value at time `s` and `s1` (the intermediate time).
607
+ solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
608
+ The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
609
+ Returns:
610
+ x_t: A pytorch tensor. The approximated solution at time `t`.
611
+ """
612
+ if solver_type not in ['dpmsolver', 'taylor']:
613
+ raise ValueError("'solver_type' must be either 'dpmsolver' or 'taylor', got {}".format(solver_type))
614
+ if r1 is None:
615
+ r1 = 0.5
616
+ ns = self.noise_schedule
617
+ lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
618
+ h = lambda_t - lambda_s
619
+ lambda_s1 = lambda_s + r1 * h
620
+ s1 = ns.inverse_lambda(lambda_s1)
621
+ log_alpha_s, log_alpha_s1, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(t)
622
+ sigma_s, sigma_s1, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(t)
623
+ alpha_s1, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_t)
624
+
625
+ if self.algorithm_type == "dpmsolver++":
626
+ phi_11 = torch.expm1(-r1 * h)
627
+ phi_1 = torch.expm1(-h)
628
+
629
+ if model_s is None:
630
+ model_s = self.model_fn(x, s)
631
+ x_s1 = (
632
+ (sigma_s1 / sigma_s) * x
633
+ - (alpha_s1 * phi_11) * model_s
634
+ )
635
+ model_s1 = self.model_fn(x_s1, s1)
636
+ if solver_type == 'dpmsolver':
637
+ x_t = (
638
+ (sigma_t / sigma_s) * x
639
+ - (alpha_t * phi_1) * model_s
640
+ - (0.5 / r1) * (alpha_t * phi_1) * (model_s1 - model_s)
641
+ )
642
+ elif solver_type == 'taylor':
643
+ x_t = (
644
+ (sigma_t / sigma_s) * x
645
+ - (alpha_t * phi_1) * model_s
646
+ + (1. / r1) * (alpha_t * (phi_1 / h + 1.)) * (model_s1 - model_s)
647
+ )
648
+ else:
649
+ phi_11 = torch.expm1(r1 * h)
650
+ phi_1 = torch.expm1(h)
651
+
652
+ if model_s is None:
653
+ model_s = self.model_fn(x, s)
654
+ x_s1 = (
655
+ torch.exp(log_alpha_s1 - log_alpha_s) * x
656
+ - (sigma_s1 * phi_11) * model_s
657
+ )
658
+ model_s1 = self.model_fn(x_s1, s1)
659
+ if solver_type == 'dpmsolver':
660
+ x_t = (
661
+ torch.exp(log_alpha_t - log_alpha_s) * x
662
+ - (sigma_t * phi_1) * model_s
663
+ - (0.5 / r1) * (sigma_t * phi_1) * (model_s1 - model_s)
664
+ )
665
+ elif solver_type == 'taylor':
666
+ x_t = (
667
+ torch.exp(log_alpha_t - log_alpha_s) * x
668
+ - (sigma_t * phi_1) * model_s
669
+ - (1. / r1) * (sigma_t * (phi_1 / h - 1.)) * (model_s1 - model_s)
670
+ )
671
+ if return_intermediate:
672
+ return x_t, {'model_s': model_s, 'model_s1': model_s1}
673
+ else:
674
+ return x_t
675
+
676
+ def singlestep_dpm_solver_third_update(self, x, s, t, r1=1./3., r2=2./3., model_s=None, model_s1=None, return_intermediate=False, solver_type='dpmsolver'):
677
+ """
678
+ Singlestep solver DPM-Solver-3 from time `s` to time `t`.
679
+
680
+ Args:
681
+ x: A pytorch tensor. The initial value at time `s`.
682
+ s: A pytorch tensor. The starting time, with the shape (1,).
683
+ t: A pytorch tensor. The ending time, with the shape (1,).
684
+ r1: A `float`. The hyperparameter of the third-order solver.
685
+ r2: A `float`. The hyperparameter of the third-order solver.
686
+ model_s: A pytorch tensor. The model function evaluated at time `s`.
687
+ If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
688
+ model_s1: A pytorch tensor. The model function evaluated at time `s1` (the intermediate time given by `r1`).
689
+ If `model_s1` is None, we evaluate the model at `s1`; otherwise we directly use it.
690
+ return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
691
+ solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
692
+ The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
693
+ Returns:
694
+ x_t: A pytorch tensor. The approximated solution at time `t`.
695
+ """
696
+ if solver_type not in ['dpmsolver', 'taylor']:
697
+ raise ValueError("'solver_type' must be either 'dpmsolver' or 'taylor', got {}".format(solver_type))
698
+ if r1 is None:
699
+ r1 = 1. / 3.
700
+ if r2 is None:
701
+ r2 = 2. / 3.
702
+ ns = self.noise_schedule
703
+ lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
704
+ h = lambda_t - lambda_s
705
+ lambda_s1 = lambda_s + r1 * h
706
+ lambda_s2 = lambda_s + r2 * h
707
+ s1 = ns.inverse_lambda(lambda_s1)
708
+ s2 = ns.inverse_lambda(lambda_s2)
709
+ log_alpha_s, log_alpha_s1, log_alpha_s2, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(s2), ns.marginal_log_mean_coeff(t)
710
+ sigma_s, sigma_s1, sigma_s2, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(s2), ns.marginal_std(t)
711
+ alpha_s1, alpha_s2, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_s2), torch.exp(log_alpha_t)
712
+
713
+ if self.algorithm_type == "dpmsolver++":
714
+ phi_11 = torch.expm1(-r1 * h)
715
+ phi_12 = torch.expm1(-r2 * h)
716
+ phi_1 = torch.expm1(-h)
717
+ phi_22 = torch.expm1(-r2 * h) / (r2 * h) + 1.
718
+ phi_2 = phi_1 / h + 1.
719
+ phi_3 = phi_2 / h - 0.5
720
+
721
+ if model_s is None:
722
+ model_s = self.model_fn(x, s)
723
+ if model_s1 is None:
724
+ x_s1 = (
725
+ (sigma_s1 / sigma_s) * x
726
+ - (alpha_s1 * phi_11) * model_s
727
+ )
728
+ model_s1 = self.model_fn(x_s1, s1)
729
+ x_s2 = (
730
+ (sigma_s2 / sigma_s) * x
731
+ - (alpha_s2 * phi_12) * model_s
732
+ + r2 / r1 * (alpha_s2 * phi_22) * (model_s1 - model_s)
733
+ )
734
+ model_s2 = self.model_fn(x_s2, s2)
735
+ if solver_type == 'dpmsolver':
736
+ x_t = (
737
+ (sigma_t / sigma_s) * x
738
+ - (alpha_t * phi_1) * model_s
739
+ + (1. / r2) * (alpha_t * phi_2) * (model_s2 - model_s)
740
+ )
741
+ elif solver_type == 'taylor':
742
+ D1_0 = (1. / r1) * (model_s1 - model_s)
743
+ D1_1 = (1. / r2) * (model_s2 - model_s)
744
+ D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
745
+ D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
746
+ x_t = (
747
+ (sigma_t / sigma_s) * x
748
+ - (alpha_t * phi_1) * model_s
749
+ + (alpha_t * phi_2) * D1
750
+ - (alpha_t * phi_3) * D2
751
+ )
752
+ else:
753
+ phi_11 = torch.expm1(r1 * h)
754
+ phi_12 = torch.expm1(r2 * h)
755
+ phi_1 = torch.expm1(h)
756
+ phi_22 = torch.expm1(r2 * h) / (r2 * h) - 1.
757
+ phi_2 = phi_1 / h - 1.
758
+ phi_3 = phi_2 / h - 0.5
759
+
760
+ if model_s is None:
761
+ model_s = self.model_fn(x, s)
762
+ if model_s1 is None:
763
+ x_s1 = (
764
+ (torch.exp(log_alpha_s1 - log_alpha_s)) * x
765
+ - (sigma_s1 * phi_11) * model_s
766
+ )
767
+ model_s1 = self.model_fn(x_s1, s1)
768
+ x_s2 = (
769
+ (torch.exp(log_alpha_s2 - log_alpha_s)) * x
770
+ - (sigma_s2 * phi_12) * model_s
771
+ - r2 / r1 * (sigma_s2 * phi_22) * (model_s1 - model_s)
772
+ )
773
+ model_s2 = self.model_fn(x_s2, s2)
774
+ if solver_type == 'dpmsolver':
775
+ x_t = (
776
+ (torch.exp(log_alpha_t - log_alpha_s)) * x
777
+ - (sigma_t * phi_1) * model_s
778
+ - (1. / r2) * (sigma_t * phi_2) * (model_s2 - model_s)
779
+ )
780
+ elif solver_type == 'taylor':
781
+ D1_0 = (1. / r1) * (model_s1 - model_s)
782
+ D1_1 = (1. / r2) * (model_s2 - model_s)
783
+ D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
784
+ D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
785
+ x_t = (
786
+ (torch.exp(log_alpha_t - log_alpha_s)) * x
787
+ - (sigma_t * phi_1) * model_s
788
+ - (sigma_t * phi_2) * D1
789
+ - (sigma_t * phi_3) * D2
790
+ )
791
+
792
+ if return_intermediate:
793
+ return x_t, {'model_s': model_s, 'model_s1': model_s1, 'model_s2': model_s2}
794
+ else:
795
+ return x_t
796
+
797
+ def multistep_dpm_solver_second_update(self, x, model_prev_list, t_prev_list, t, solver_type="dpmsolver"):
798
+ """
799
+ Multistep solver DPM-Solver-2 from time `t_prev_list[-1]` to time `t`.
800
+
801
+ Args:
802
+ x: A pytorch tensor. The initial value at time `s`.
803
+ model_prev_list: A list of pytorch tensor. The previous computed model values.
804
+ t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (1,)
805
+ t: A pytorch tensor. The ending time, with the shape (1,).
806
+ solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
807
+ The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
808
+ Returns:
809
+ x_t: A pytorch tensor. The approximated solution at time `t`.
810
+ """
811
+ if solver_type not in ['dpmsolver', 'taylor']:
812
+ raise ValueError("'solver_type' must be either 'dpmsolver' or 'taylor', got {}".format(solver_type))
813
+ ns = self.noise_schedule
814
+ model_prev_1, model_prev_0 = model_prev_list[-2], model_prev_list[-1]
815
+ t_prev_1, t_prev_0 = t_prev_list[-2], t_prev_list[-1]
816
+ lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t)
817
+ log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
818
+ sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
819
+ alpha_t = torch.exp(log_alpha_t)
820
+
821
+ h_0 = lambda_prev_0 - lambda_prev_1
822
+ h = lambda_t - lambda_prev_0
823
+ r0 = h_0 / h
824
+ D1_0 = (1. / r0) * (model_prev_0 - model_prev_1)
825
+ if self.algorithm_type == "dpmsolver++":
826
+ phi_1 = torch.expm1(-h)
827
+ if solver_type == 'dpmsolver':
828
+ x_t = (
829
+ (sigma_t / sigma_prev_0) * x
830
+ - (alpha_t * phi_1) * model_prev_0
831
+ - 0.5 * (alpha_t * phi_1) * D1_0
832
+ )
833
+ elif solver_type == 'taylor':
834
+ x_t = (
835
+ (sigma_t / sigma_prev_0) * x
836
+ - (alpha_t * phi_1) * model_prev_0
837
+ + (alpha_t * (phi_1 / h + 1.)) * D1_0
838
+ )
839
+ else:
840
+ phi_1 = torch.expm1(h)
841
+ if solver_type == 'dpmsolver':
842
+ x_t = (
843
+ (torch.exp(log_alpha_t - log_alpha_prev_0)) * x
844
+ - (sigma_t * phi_1) * model_prev_0
845
+ - 0.5 * (sigma_t * phi_1) * D1_0
846
+ )
847
+ elif solver_type == 'taylor':
848
+ x_t = (
849
+ (torch.exp(log_alpha_t - log_alpha_prev_0)) * x
850
+ - (sigma_t * phi_1) * model_prev_0
851
+ - (sigma_t * (phi_1 / h - 1.)) * D1_0
852
+ )
853
+ return x_t
854
+
855
+ def multistep_dpm_solver_third_update(self, x, model_prev_list, t_prev_list, t, solver_type='dpmsolver'):
856
+ """
857
+ Multistep solver DPM-Solver-3 from time `t_prev_list[-1]` to time `t`.
858
+
859
+ Args:
860
+ x: A pytorch tensor. The initial value at time `s`.
861
+ model_prev_list: A list of pytorch tensor. The previous computed model values.
862
+ t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (1,)
863
+ t: A pytorch tensor. The ending time, with the shape (1,).
864
+ solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
865
+ The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
866
+ Returns:
867
+ x_t: A pytorch tensor. The approximated solution at time `t`.
868
+ """
869
+ ns = self.noise_schedule
870
+ model_prev_2, model_prev_1, model_prev_0 = model_prev_list
871
+ t_prev_2, t_prev_1, t_prev_0 = t_prev_list
872
+ lambda_prev_2, lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_2), ns.marginal_lambda(t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t)
873
+ log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
874
+ sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
875
+ alpha_t = torch.exp(log_alpha_t)
876
+
877
+ h_1 = lambda_prev_1 - lambda_prev_2
878
+ h_0 = lambda_prev_0 - lambda_prev_1
879
+ h = lambda_t - lambda_prev_0
880
+ r0, r1 = h_0 / h, h_1 / h
881
+ D1_0 = (1. / r0) * (model_prev_0 - model_prev_1)
882
+ D1_1 = (1. / r1) * (model_prev_1 - model_prev_2)
883
+ D1 = D1_0 + (r0 / (r0 + r1)) * (D1_0 - D1_1)
884
+ D2 = (1. / (r0 + r1)) * (D1_0 - D1_1)
885
+ if self.algorithm_type == "dpmsolver++":
886
+ phi_1 = torch.expm1(-h)
887
+ phi_2 = phi_1 / h + 1.
888
+ phi_3 = phi_2 / h - 0.5
889
+ x_t = (
890
+ (sigma_t / sigma_prev_0) * x
891
+ - (alpha_t * phi_1) * model_prev_0
892
+ + (alpha_t * phi_2) * D1
893
+ - (alpha_t * phi_3) * D2
894
+ )
895
+ else:
896
+ phi_1 = torch.expm1(h)
897
+ phi_2 = phi_1 / h - 1.
898
+ phi_3 = phi_2 / h - 0.5
899
+ x_t = (
900
+ (torch.exp(log_alpha_t - log_alpha_prev_0)) * x
901
+ - (sigma_t * phi_1) * model_prev_0
902
+ - (sigma_t * phi_2) * D1
903
+ - (sigma_t * phi_3) * D2
904
+ )
905
+ return x_t
906
+
907
+ def singlestep_dpm_solver_update(self, x, s, t, order, return_intermediate=False, solver_type='dpmsolver', r1=None, r2=None):
908
+ """
909
+ Singlestep DPM-Solver with the order `order` from time `s` to time `t`.
910
+
911
+ Args:
912
+ x: A pytorch tensor. The initial value at time `s`.
913
+ s: A pytorch tensor. The starting time, with the shape (1,).
914
+ t: A pytorch tensor. The ending time, with the shape (1,).
915
+ order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
916
+ return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
917
+ solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
918
+ The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
919
+ r1: A `float`. The hyperparameter of the second-order or third-order solver.
920
+ r2: A `float`. The hyperparameter of the third-order solver.
921
+ Returns:
922
+ x_t: A pytorch tensor. The approximated solution at time `t`.
923
+ """
924
+ if order == 1:
925
+ return self.dpm_solver_first_update(x, s, t, return_intermediate=return_intermediate)
926
+ elif order == 2:
927
+ return self.singlestep_dpm_solver_second_update(x, s, t, return_intermediate=return_intermediate, solver_type=solver_type, r1=r1)
928
+ elif order == 3:
929
+ return self.singlestep_dpm_solver_third_update(x, s, t, return_intermediate=return_intermediate, solver_type=solver_type, r1=r1, r2=r2)
930
+ else:
931
+ raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
932
+
933
+ def multistep_dpm_solver_update(self, x, model_prev_list, t_prev_list, t, order, solver_type='dpmsolver'):
934
+ """
935
+ Multistep DPM-Solver with the order `order` from time `t_prev_list[-1]` to time `t`.
936
+
937
+ Args:
938
+ x: A pytorch tensor. The initial value at time `s`.
939
+ model_prev_list: A list of pytorch tensor. The previous computed model values.
940
+ t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (1,)
941
+ t: A pytorch tensor. The ending time, with the shape (1,).
942
+ order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
943
+ solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
944
+ The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
945
+ Returns:
946
+ x_t: A pytorch tensor. The approximated solution at time `t`.
947
+ """
948
+ if order == 1:
949
+ return self.dpm_solver_first_update(x, t_prev_list[-1], t, model_s=model_prev_list[-1])
950
+ elif order == 2:
951
+ return self.multistep_dpm_solver_second_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
952
+ elif order == 3:
953
+ return self.multistep_dpm_solver_third_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
954
+ else:
955
+ raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
956
+
957
+ def dpm_solver_adaptive(self, x, order, t_T, t_0, h_init=0.05, atol=0.0078, rtol=0.05, theta=0.9, t_err=1e-5, solver_type='dpmsolver'):
958
+ """
959
+ The adaptive step size solver based on singlestep DPM-Solver.
960
+
961
+ Args:
962
+ x: A pytorch tensor. The initial value at time `t_T`.
963
+ order: A `int`. The (higher) order of the solver. We only support order == 2 or 3.
964
+ t_T: A `float`. The starting time of the sampling (default is T).
965
+ t_0: A `float`. The ending time of the sampling (default is epsilon).
966
+ h_init: A `float`. The initial step size (for logSNR).
967
+ atol: A `float`. The absolute tolerance of the solver. For image data, the default setting is 0.0078, followed [1].
968
+ rtol: A `float`. The relative tolerance of the solver. The default setting is 0.05.
969
+ theta: A `float`. The safety hyperparameter for adapting the step size. The default setting is 0.9, followed [1].
970
+ t_err: A `float`. The tolerance for the time. We solve the diffusion ODE until the absolute error between the
971
+ current time and `t_0` is less than `t_err`. The default setting is 1e-5.
972
+ solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
973
+ The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
974
+ Returns:
975
+ x_0: A pytorch tensor. The approximated solution at time `t_0`.
976
+
977
+ [1] A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T. Kachman, and I. Mitliagkas, "Gotta go fast when generating data with score-based models," arXiv preprint arXiv:2105.14080, 2021.
978
+ """
979
+ ns = self.noise_schedule
980
+ s = t_T * torch.ones((1,)).to(x)
981
+ lambda_s = ns.marginal_lambda(s)
982
+ lambda_0 = ns.marginal_lambda(t_0 * torch.ones_like(s).to(x))
983
+ h = h_init * torch.ones_like(s).to(x)
984
+ x_prev = x
985
+ nfe = 0
986
+ if order == 2:
987
+ r1 = 0.5
988
+ lower_update = lambda x, s, t: self.dpm_solver_first_update(x, s, t, return_intermediate=True)
989
+ higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1, solver_type=solver_type, **kwargs)
990
+ elif order == 3:
991
+ r1, r2 = 1. / 3., 2. / 3.
992
+ lower_update = lambda x, s, t: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1, return_intermediate=True, solver_type=solver_type)
993
+ higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_third_update(x, s, t, r1=r1, r2=r2, solver_type=solver_type, **kwargs)
994
+ else:
995
+ raise ValueError("For adaptive step size solver, order must be 2 or 3, got {}".format(order))
996
+ while torch.abs((s - t_0)).mean() > t_err:
997
+ t = ns.inverse_lambda(lambda_s + h)
998
+ x_lower, lower_noise_kwargs = lower_update(x, s, t)
999
+ x_higher = higher_update(x, s, t, **lower_noise_kwargs)
1000
+ delta = torch.max(torch.ones_like(x).to(x) * atol, rtol * torch.max(torch.abs(x_lower), torch.abs(x_prev)))
1001
+ norm_fn = lambda v: torch.sqrt(torch.square(v.reshape((v.shape[0], -1))).mean(dim=-1, keepdim=True))
1002
+ E = norm_fn((x_higher - x_lower) / delta).max()
1003
+ if torch.all(E <= 1.):
1004
+ x = x_higher
1005
+ s = t
1006
+ x_prev = x_lower
1007
+ lambda_s = ns.marginal_lambda(s)
1008
+ h = torch.min(theta * h * torch.float_power(E, -1. / order).float(), lambda_0 - lambda_s)
1009
+ nfe += order
1010
+ print('adaptive solver nfe', nfe)
1011
+ return x
1012
+
1013
+ def add_noise(self, x, t, noise=None):
1014
+ """
1015
+ Compute the noised input xt = alpha_t * x + sigma_t * noise.
1016
+
1017
+ Args:
1018
+ x: A `torch.Tensor` with shape `(batch_size, *shape)`.
1019
+ t: A `torch.Tensor` with shape `(t_size,)`.
1020
+ Returns:
1021
+ xt with shape `(t_size, batch_size, *shape)`.
1022
+ """
1023
+ alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
1024
+ if noise is None:
1025
+ noise = torch.randn((t.shape[0], *x.shape), device=x.device)
1026
+ x = x.reshape((-1, *x.shape))
1027
+ xt = expand_dims(alpha_t, x.dim()) * x + expand_dims(sigma_t, x.dim()) * noise
1028
+ if t.shape[0] == 1:
1029
+ return xt.squeeze(0)
1030
+ else:
1031
+ return xt
1032
+
1033
+ def inverse(self, x, steps=20, t_start=None, t_end=None, order=2, skip_type='time_uniform',
1034
+ method='multistep', lower_order_final=True, denoise_to_zero=False, solver_type='dpmsolver',
1035
+ atol=0.0078, rtol=0.05, return_intermediate=False,
1036
+ ):
1037
+ """
1038
+ Inverse the sample `x` from time `t_start` to `t_end` by DPM-Solver.
1039
+ For discrete-time DPMs, we use `t_start=1/N`, where `N` is the total time steps during training.
1040
+ """
1041
+ t_0 = 1. / self.noise_schedule.total_N if t_start is None else t_start
1042
+ t_T = self.noise_schedule.T if t_end is None else t_end
1043
+ assert t_0 > 0 and t_T > 0, "Time range needs to be greater than 0. For discrete-time DPMs, it needs to be in [1 / N, 1], where N is the length of betas array"
1044
+ return self.sample(x, steps=steps, t_start=t_0, t_end=t_T, order=order, skip_type=skip_type,
1045
+ method=method, lower_order_final=lower_order_final, denoise_to_zero=denoise_to_zero, solver_type=solver_type,
1046
+ atol=atol, rtol=rtol, return_intermediate=return_intermediate)
1047
+
1048
+ def sample(self, x, steps=20, t_start=None, t_end=None, order=2, skip_type='time_uniform',
1049
+ method='multistep', lower_order_final=True, denoise_to_zero=False, solver_type='dpmsolver',
1050
+ atol=0.0078, rtol=0.05, return_intermediate=False,
1051
+ ):
1052
+ """
1053
+ Compute the sample at time `t_end` by DPM-Solver, given the initial `x` at time `t_start`.
1054
+
1055
+ =====================================================
1056
+
1057
+ We support the following algorithms for both noise prediction model and data prediction model:
1058
+ - 'singlestep':
1059
+ Singlestep DPM-Solver (i.e. "DPM-Solver-fast" in the paper), which combines different orders of singlestep DPM-Solver.
1060
+ We combine all the singlestep solvers with order <= `order` to use up all the function evaluations (steps).
1061
+ The total number of function evaluations (NFE) == `steps`.
1062
+ Given a fixed NFE == `steps`, the sampling procedure is:
1063
+ - If `order` == 1:
1064
+ - Denote K = steps. We use K steps of DPM-Solver-1 (i.e. DDIM).
1065
+ - If `order` == 2:
1066
+ - Denote K = (steps // 2) + (steps % 2). We take K intermediate time steps for sampling.
1067
+ - If steps % 2 == 0, we use K steps of singlestep DPM-Solver-2.
1068
+ - If steps % 2 == 1, we use (K - 1) steps of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
1069
+ - If `order` == 3:
1070
+ - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
1071
+ - If steps % 3 == 0, we use (K - 2) steps of singlestep DPM-Solver-3, and 1 step of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
1072
+ - If steps % 3 == 1, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of DPM-Solver-1.
1073
+ - If steps % 3 == 2, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of singlestep DPM-Solver-2.
1074
+ - 'multistep':
1075
+ Multistep DPM-Solver with the order of `order`. The total number of function evaluations (NFE) == `steps`.
1076
+ We initialize the first `order` values by lower order multistep solvers.
1077
+ Given a fixed NFE == `steps`, the sampling procedure is:
1078
+ Denote K = steps.
1079
+ - If `order` == 1:
1080
+ - We use K steps of DPM-Solver-1 (i.e. DDIM).
1081
+ - If `order` == 2:
1082
+ - We firstly use 1 step of DPM-Solver-1, then use (K - 1) step of multistep DPM-Solver-2.
1083
+ - If `order` == 3:
1084
+ - We firstly use 1 step of DPM-Solver-1, then 1 step of multistep DPM-Solver-2, then (K - 2) step of multistep DPM-Solver-3.
1085
+ - 'singlestep_fixed':
1086
+ Fixed order singlestep DPM-Solver (i.e. DPM-Solver-1 or singlestep DPM-Solver-2 or singlestep DPM-Solver-3).
1087
+ We use singlestep DPM-Solver-`order` for `order`=1 or 2 or 3, with total [`steps` // `order`] * `order` NFE.
1088
+ - 'adaptive':
1089
+ Adaptive step size DPM-Solver (i.e. "DPM-Solver-12" and "DPM-Solver-23" in the paper).
1090
+ We ignore `steps` and use adaptive step size DPM-Solver with a higher order of `order`.
1091
+ You can adjust the absolute tolerance `atol` and the relative tolerance `rtol` to balance the computatation costs
1092
+ (NFE) and the sample quality.
1093
+ - If `order` == 2, we use DPM-Solver-12 which combines DPM-Solver-1 and singlestep DPM-Solver-2.
1094
+ - If `order` == 3, we use DPM-Solver-23 which combines singlestep DPM-Solver-2 and singlestep DPM-Solver-3.
1095
+
1096
+ =====================================================
1097
+
1098
+ Some advices for choosing the algorithm:
1099
+ - For **unconditional sampling** or **guided sampling with small guidance scale** by DPMs:
1100
+ Use singlestep DPM-Solver or DPM-Solver++ ("DPM-Solver-fast" in the paper) with `order = 3`.
1101
+ e.g., DPM-Solver:
1102
+ >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver")
1103
+ >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3,
1104
+ skip_type='time_uniform', method='singlestep')
1105
+ e.g., DPM-Solver++:
1106
+ >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver++")
1107
+ >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3,
1108
+ skip_type='time_uniform', method='singlestep')
1109
+ - For **guided sampling with large guidance scale** by DPMs:
1110
+ Use multistep DPM-Solver with `algorithm_type="dpmsolver++"` and `order = 2`.
1111
+ e.g.
1112
+ >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver++")
1113
+ >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=2,
1114
+ skip_type='time_uniform', method='multistep')
1115
+
1116
+ We support three types of `skip_type`:
1117
+ - 'logSNR': uniform logSNR for the time steps. **Recommended for low-resolutional images**
1118
+ - 'time_uniform': uniform time for the time steps. **Recommended for high-resolutional images**.
1119
+ - 'time_quadratic': quadratic time for the time steps.
1120
+
1121
+ =====================================================
1122
+ Args:
1123
+ x: A pytorch tensor. The initial value at time `t_start`
1124
+ e.g. if `t_start` == T, then `x` is a sample from the standard normal distribution.
1125
+ steps: A `int`. The total number of function evaluations (NFE).
1126
+ t_start: A `float`. The starting time of the sampling.
1127
+ If `T` is None, we use self.noise_schedule.T (default is 1.0).
1128
+ t_end: A `float`. The ending time of the sampling.
1129
+ If `t_end` is None, we use 1. / self.noise_schedule.total_N.
1130
+ e.g. if total_N == 1000, we have `t_end` == 1e-3.
1131
+ For discrete-time DPMs:
1132
+ - We recommend `t_end` == 1. / self.noise_schedule.total_N.
1133
+ For continuous-time DPMs:
1134
+ - We recommend `t_end` == 1e-3 when `steps` <= 15; and `t_end` == 1e-4 when `steps` > 15.
1135
+ order: A `int`. The order of DPM-Solver.
1136
+ skip_type: A `str`. The type for the spacing of the time steps. 'time_uniform' or 'logSNR' or 'time_quadratic'.
1137
+ method: A `str`. The method for sampling. 'singlestep' or 'multistep' or 'singlestep_fixed' or 'adaptive'.
1138
+ denoise_to_zero: A `bool`. Whether to denoise to time 0 at the final step.
1139
+ Default is `False`. If `denoise_to_zero` is `True`, the total NFE is (`steps` + 1).
1140
+
1141
+ This trick is firstly proposed by DDPM (https://arxiv.org/abs/2006.11239) and
1142
+ score_sde (https://arxiv.org/abs/2011.13456). Such trick can improve the FID
1143
+ for diffusion models sampling by diffusion SDEs for low-resolutional images
1144
+ (such as CIFAR-10). However, we observed that such trick does not matter for
1145
+ high-resolutional images. As it needs an additional NFE, we do not recommend
1146
+ it for high-resolutional images.
1147
+ lower_order_final: A `bool`. Whether to use lower order solvers at the final steps.
1148
+ Only valid for `method=multistep` and `steps < 15`. We empirically find that
1149
+ this trick is a key to stabilizing the sampling by DPM-Solver with very few steps
1150
+ (especially for steps <= 10). So we recommend to set it to be `True`.
1151
+ solver_type: A `str`. The taylor expansion type for the solver. `dpmsolver` or `taylor`. We recommend `dpmsolver`.
1152
+ atol: A `float`. The absolute tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
1153
+ rtol: A `float`. The relative tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
1154
+ return_intermediate: A `bool`. Whether to save the xt at each step.
1155
+ When set to `True`, method returns a tuple (x0, intermediates); when set to False, method returns only x0.
1156
+ Returns:
1157
+ x_end: A pytorch tensor. The approximated solution at time `t_end`.
1158
+
1159
+ """
1160
+ t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
1161
+ t_T = self.noise_schedule.T if t_start is None else t_start
1162
+ assert t_0 > 0 and t_T > 0, "Time range needs to be greater than 0. For discrete-time DPMs, it needs to be in [1 / N, 1], where N is the length of betas array"
1163
+ if return_intermediate:
1164
+ assert method in ['multistep', 'singlestep', 'singlestep_fixed'], "Cannot use adaptive solver when saving intermediate values"
1165
+ if self.correcting_xt_fn is not None:
1166
+ assert method in ['multistep', 'singlestep', 'singlestep_fixed'], "Cannot use adaptive solver when correcting_xt_fn is not None"
1167
+ device = x.device
1168
+ intermediates = []
1169
+ with torch.no_grad():
1170
+ if method == 'adaptive':
1171
+ x = self.dpm_solver_adaptive(x, order=order, t_T=t_T, t_0=t_0, atol=atol, rtol=rtol, solver_type=solver_type)
1172
+ elif method == 'multistep':
1173
+ assert steps >= order
1174
+ timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
1175
+ assert timesteps.shape[0] - 1 == steps
1176
+ # Init the initial values.
1177
+ step = 0
1178
+ t = timesteps[step]
1179
+ t_prev_list = [t]
1180
+ model_prev_list = [self.model_fn(x, t)]
1181
+ if self.correcting_xt_fn is not None:
1182
+ x = self.correcting_xt_fn(x, t, step)
1183
+ if return_intermediate:
1184
+ intermediates.append(x)
1185
+ # Init the first `order` values by lower order multistep DPM-Solver.
1186
+ for step in range(1, order):
1187
+ t = timesteps[step]
1188
+ x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, t, step, solver_type=solver_type)
1189
+ if self.correcting_xt_fn is not None:
1190
+ x = self.correcting_xt_fn(x, t, step)
1191
+ if return_intermediate:
1192
+ intermediates.append(x)
1193
+ t_prev_list.append(t)
1194
+ model_prev_list.append(self.model_fn(x, t))
1195
+ # Compute the remaining values by `order`-th order multistep DPM-Solver.
1196
+ for step in range(order, steps + 1):
1197
+ t = timesteps[step]
1198
+ # We only use lower order for steps < 10
1199
+ if lower_order_final and steps < 10:
1200
+ step_order = min(order, steps + 1 - step)
1201
+ else:
1202
+ step_order = order
1203
+ x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, t, step_order, solver_type=solver_type)
1204
+ if self.correcting_xt_fn is not None:
1205
+ x = self.correcting_xt_fn(x, t, step)
1206
+ if return_intermediate:
1207
+ intermediates.append(x)
1208
+ for i in range(order - 1):
1209
+ t_prev_list[i] = t_prev_list[i + 1]
1210
+ model_prev_list[i] = model_prev_list[i + 1]
1211
+ t_prev_list[-1] = t
1212
+ # We do not need to evaluate the final model value.
1213
+ if step < steps:
1214
+ model_prev_list[-1] = self.model_fn(x, t)
1215
+ elif method in ['singlestep', 'singlestep_fixed']:
1216
+ if method == 'singlestep':
1217
+ timesteps_outer, orders = self.get_orders_and_timesteps_for_singlestep_solver(steps=steps, order=order, skip_type=skip_type, t_T=t_T, t_0=t_0, device=device)
1218
+ elif method == 'singlestep_fixed':
1219
+ K = steps // order
1220
+ orders = [order,] * K
1221
+ timesteps_outer = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=K, device=device)
1222
+ for step, order in enumerate(orders):
1223
+ s, t = timesteps_outer[step], timesteps_outer[step + 1]
1224
+ timesteps_inner = self.get_time_steps(skip_type=skip_type, t_T=s.item(), t_0=t.item(), N=order, device=device)
1225
+ lambda_inner = self.noise_schedule.marginal_lambda(timesteps_inner)
1226
+ h = lambda_inner[-1] - lambda_inner[0]
1227
+ r1 = None if order <= 1 else (lambda_inner[1] - lambda_inner[0]) / h
1228
+ r2 = None if order <= 2 else (lambda_inner[2] - lambda_inner[0]) / h
1229
+ x = self.singlestep_dpm_solver_update(x, s, t, order, solver_type=solver_type, r1=r1, r2=r2)
1230
+ if self.correcting_xt_fn is not None:
1231
+ x = self.correcting_xt_fn(x, t, step)
1232
+ if return_intermediate:
1233
+ intermediates.append(x)
1234
+ else:
1235
+ raise ValueError("Got wrong method {}".format(method))
1236
+ if denoise_to_zero:
1237
+ t = torch.ones((1,)).to(device) * t_0
1238
+ x = self.denoise_to_zero_fn(x, t)
1239
+ if self.correcting_xt_fn is not None:
1240
+ x = self.correcting_xt_fn(x, t, step + 1)
1241
+ if return_intermediate:
1242
+ intermediates.append(x)
1243
+ if return_intermediate:
1244
+ return x, intermediates
1245
+ else:
1246
+ return x
1247
+
1248
+
1249
+
1250
+ #############################################################
1251
+ # other utility functions
1252
+ #############################################################
1253
+
1254
+ def interpolate_fn(x, xp, yp):
1255
+ """
1256
+ A piecewise linear function y = f(x), using xp and yp as keypoints.
1257
+ We implement f(x) in a differentiable way (i.e. applicable for autograd).
1258
+ The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
1259
+
1260
+ Args:
1261
+ x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
1262
+ xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
1263
+ yp: PyTorch tensor with shape [C, K].
1264
+ Returns:
1265
+ The function values f(x), with shape [N, C].
1266
+ """
1267
+ N, K = x.shape[0], xp.shape[1]
1268
+ all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
1269
+ sorted_all_x, x_indices = torch.sort(all_x, dim=2)
1270
+ x_idx = torch.argmin(x_indices, dim=2)
1271
+ cand_start_idx = x_idx - 1
1272
+ start_idx = torch.where(
1273
+ torch.eq(x_idx, 0),
1274
+ torch.tensor(1, device=x.device),
1275
+ torch.where(
1276
+ torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
1277
+ ),
1278
+ )
1279
+ end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
1280
+ start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
1281
+ end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
1282
+ start_idx2 = torch.where(
1283
+ torch.eq(x_idx, 0),
1284
+ torch.tensor(0, device=x.device),
1285
+ torch.where(
1286
+ torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
1287
+ ),
1288
+ )
1289
+ y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
1290
+ start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
1291
+ end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
1292
+ cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
1293
+ return cand
1294
+
1295
+
1296
+ def expand_dims(v, dims):
1297
+ """
1298
+ Expand the tensor `v` to the dim `dims`.
1299
+
1300
+ Args:
1301
+ `v`: a PyTorch tensor with shape [N].
1302
+ `dim`: a `int`.
1303
+ Returns:
1304
+ a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
1305
+ """
1306
+ return v[(...,) + (None,)*(dims - 1)]
experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/core/logger.py ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from PIL import Image
3
+ import importlib
4
+ from datetime import datetime
5
+ import logging
6
+ import pandas as pd
7
+
8
+ import core.util as Util
9
+
10
+ class InfoLogger():
11
+ """
12
+ use logging to record log, only work on GPU 0 by judging global_rank
13
+ """
14
+ def __init__(self, opt):
15
+ self.opt = opt
16
+ self.rank = opt['global_rank']
17
+ self.phase = opt['phase']
18
+
19
+ self.setup_logger(None, opt['path']['experiments_root'], opt['phase'], level=logging.INFO, screen=False)
20
+ self.logger = logging.getLogger(opt['phase'])
21
+ self.infologger_ftns = {'info', 'warning', 'debug'}
22
+
23
+ def __getattr__(self, name):
24
+ if self.rank != 0: # info only print on GPU 0.
25
+ def wrapper(info, *args, **kwargs):
26
+ pass
27
+ return wrapper
28
+ if name in self.infologger_ftns:
29
+ print_info = getattr(self.logger, name, None)
30
+ def wrapper(info, *args, **kwargs):
31
+ print_info(info, *args, **kwargs)
32
+ return wrapper
33
+
34
+ @staticmethod
35
+ def setup_logger(logger_name, root, phase, level=logging.INFO, screen=False):
36
+ """ set up logger """
37
+ l = logging.getLogger(logger_name)
38
+ formatter = logging.Formatter(
39
+ '%(asctime)s.%(msecs)03d - %(levelname)s: %(message)s', datefmt='%y-%m-%d %H:%M:%S')
40
+ log_file = os.path.join(root, '{}.log'.format(phase))
41
+ fh = logging.FileHandler(log_file, mode='a+')
42
+ fh.setFormatter(formatter)
43
+ l.setLevel(level)
44
+ l.addHandler(fh)
45
+ if screen:
46
+ sh = logging.StreamHandler()
47
+ sh.setFormatter(formatter)
48
+ l.addHandler(sh)
49
+
50
+ class VisualWriter():
51
+ """
52
+ use tensorboard to record visuals, support 'add_scalar', 'add_scalars', 'add_image', 'add_images', etc. funtion.
53
+ Also integrated with save results function.
54
+ """
55
+ def __init__(self, opt, logger):
56
+ log_dir = opt['path']['tb_logger']
57
+ self.result_dir = opt['path']['results']
58
+ enabled = opt['train']['tensorboard']
59
+ self.rank = opt['global_rank']
60
+
61
+ self.writer = None
62
+ self.selected_module = ""
63
+
64
+ if enabled and self.rank==0:
65
+ log_dir = str(log_dir)
66
+
67
+ # Retrieve vizualization writer.
68
+ succeeded = False
69
+ for module in ["tensorboardX", "torch.utils.tensorboard"]:
70
+ try:
71
+ self.writer = importlib.import_module(module).SummaryWriter(log_dir)
72
+ succeeded = True
73
+ break
74
+ except ImportError:
75
+ succeeded = False
76
+ self.selected_module = module
77
+
78
+ if not succeeded:
79
+ message = "Warning: visualization (Tensorboard) is configured to use, but currently not installed on " \
80
+ "this machine. Please install TensorboardX with 'pip install tensorboardx', upgrade PyTorch to " \
81
+ "version >= 1.1 to use 'torch.utils.tensorboard' or turn off the option in the 'config.json' file."
82
+ logger.warning(message)
83
+
84
+ self.epoch = 0
85
+ self.iter = 0
86
+ self.phase = ''
87
+
88
+ self.tb_writer_ftns = {
89
+ 'add_scalar', 'add_scalars', 'add_image', 'add_images', 'add_audio',
90
+ 'add_text', 'add_histogram', 'add_pr_curve', 'add_embedding'
91
+ }
92
+ self.tag_mode_exceptions = {'add_histogram', 'add_embedding'}
93
+ self.custom_ftns = {'close'}
94
+ self.timer = datetime.now()
95
+
96
+ def set_iter(self, epoch, iter, phase='train'):
97
+ self.phase = phase
98
+ self.epoch = epoch
99
+ self.iter = iter
100
+
101
+ def save_images(self, results):
102
+ result_path = os.path.join(self.result_dir, self.phase)
103
+ os.makedirs(result_path, exist_ok=True)
104
+ result_path = os.path.join(result_path, str(self.epoch))
105
+ os.makedirs(result_path, exist_ok=True)
106
+
107
+ ''' get names and corresponding images from results[OrderedDict] '''
108
+ try:
109
+ names = results['name']
110
+ outputs = Util.postprocess(results['result'])
111
+ for i in range(len(names)):
112
+ if os.path.exists(os.path.join(result_path, names[i])):
113
+ pass
114
+ else:
115
+ Image.fromarray(outputs[i]).save(os.path.join(result_path, names[i]))
116
+ except:
117
+ raise NotImplementedError('You must specify the context of name and result in save_current_results functions of model.')
118
+
119
+ def close(self):
120
+ self.writer.close()
121
+ print('Close the Tensorboard SummaryWriter.')
122
+
123
+
124
+ def __getattr__(self, name):
125
+ """
126
+ If visualization is configured to use:
127
+ return add_data() methods of tensorboard with additional information (step, tag) added.
128
+ Otherwise:
129
+ return a blank function handle that does nothing
130
+ """
131
+ if name in self.tb_writer_ftns:
132
+ add_data = getattr(self.writer, name, None)
133
+ def wrapper(tag, data, *args, **kwargs):
134
+ if add_data is not None:
135
+ # add phase(train/valid) tag
136
+ if name not in self.tag_mode_exceptions:
137
+ tag = '{}/{}'.format(self.phase, tag)
138
+ add_data(tag, data, self.iter, *args, **kwargs)
139
+ return wrapper
140
+ else:
141
+ # default action for returning methods defined in this class, set_step() for instance.
142
+ try:
143
+ attr = object.__getattr__(name)
144
+ except AttributeError:
145
+ raise AttributeError("type object '{}' has no attribute '{}'".format(self.selected_module, name))
146
+ return attr
147
+
148
+
149
+ class LogTracker:
150
+ """
151
+ record training numerical indicators.
152
+ """
153
+ def __init__(self, *keys, phase='train'):
154
+ self.phase = phase
155
+ self._data = pd.DataFrame(index=keys, columns=['total', 'counts', 'average'])
156
+ self.reset()
157
+
158
+ def reset(self):
159
+ for col in self._data.columns:
160
+ self._data[col].values[:] = 0
161
+
162
+ def update(self, key, value, n=1):
163
+ self._data.total[key] += value * n
164
+ self._data.counts[key] += n
165
+ self._data.average[key] = self._data.total[key] / self._data.counts[key]
166
+
167
+ def avg(self, key):
168
+ return self._data.average[key]
169
+
170
+ def result(self):
171
+ return {'{}/{}'.format(self.phase, k):v for k, v in dict(self._data.average).items()}
experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/core/praser.py ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from collections import OrderedDict
3
+ import json
4
+ from pathlib import Path
5
+ from datetime import datetime
6
+ from functools import partial
7
+ import importlib
8
+ from types import FunctionType
9
+ import shutil
10
+ def init_obj(opt, logger, *args, default_file_name='default file', given_module=None, init_type='Network', **modify_kwargs):
11
+ """
12
+ finds a function handle with the name given as 'name' in config,
13
+ and returns the instance initialized with corresponding args.
14
+ """
15
+ if opt is None or len(opt)<1:
16
+ logger.info('Option is None when initialize {}'.format(init_type))
17
+ return None
18
+
19
+ ''' default format is dict with name key '''
20
+ if isinstance(opt, str):
21
+ opt = {'name': opt}
22
+ logger.warning('Config is a str, converts to a dict {}'.format(opt))
23
+
24
+ name = opt['name']
25
+ ''' name can be list, indicates the file and class name of function '''
26
+ if isinstance(name, list):
27
+ file_name, class_name = name[0], name[1]
28
+ else:
29
+ file_name, class_name = default_file_name, name
30
+ try:
31
+ if given_module is not None:
32
+ module = given_module
33
+ else:
34
+ module = importlib.import_module(file_name)
35
+
36
+ attr = getattr(module, class_name)
37
+ kwargs = opt.get('args', {})
38
+ kwargs.update(modify_kwargs)
39
+ ''' import class or function with args '''
40
+ if isinstance(attr, type):
41
+ ret = attr(*args, **kwargs)
42
+ ret.__name__ = ret.__class__.__name__
43
+ elif isinstance(attr, FunctionType):
44
+ ret = partial(attr, *args, **kwargs)
45
+ ret.__name__ = attr.__name__
46
+ # ret = attr
47
+ logger.info('{} [{:s}() form {:s}] is created.'.format(init_type, class_name, file_name))
48
+ except:
49
+ raise NotImplementedError('{} [{:s}() form {:s}] not recognized.'.format(init_type, class_name, file_name))
50
+ return ret
51
+
52
+
53
+ def mkdirs(paths):
54
+ if isinstance(paths, str):
55
+ os.makedirs(paths, exist_ok=True)
56
+ else:
57
+ for path in paths:
58
+ os.makedirs(path, exist_ok=True)
59
+
60
+ def get_timestamp():
61
+ return datetime.now().strftime('%y%m%d_%H%M%S')
62
+
63
+
64
+ def write_json(content, fname):
65
+ fname = Path(fname)
66
+ with fname.open('wt') as handle:
67
+ json.dump(content, handle, indent=4, sort_keys=False)
68
+
69
+ class NoneDict(dict):
70
+ def __missing__(self, key):
71
+ return None
72
+
73
+ def dict_to_nonedict(opt):
74
+ """ convert to NoneDict, which return None for missing key. """
75
+ if isinstance(opt, dict):
76
+ new_opt = dict()
77
+ for key, sub_opt in opt.items():
78
+ new_opt[key] = dict_to_nonedict(sub_opt)
79
+ return NoneDict(**new_opt)
80
+ elif isinstance(opt, list):
81
+ return [dict_to_nonedict(sub_opt) for sub_opt in opt]
82
+ else:
83
+ return opt
84
+
85
+ def dict2str(opt, indent_l=1):
86
+ """ dict to string for logger """
87
+ msg = ''
88
+ for k, v in opt.items():
89
+ if isinstance(v, dict):
90
+ msg += ' ' * (indent_l * 2) + k + ':[\n'
91
+ msg += dict2str(v, indent_l + 1)
92
+ msg += ' ' * (indent_l * 2) + ']\n'
93
+ else:
94
+ msg += ' ' * (indent_l * 2) + k + ': ' + str(v) + '\n'
95
+ return msg
96
+
97
+ def parse(args):
98
+ json_str = ''
99
+ with open(args.config, 'r') as f:
100
+ for line in f:
101
+ line = line.split('//')[0] + '\n'
102
+ json_str += line
103
+ opt = json.loads(json_str, object_pairs_hook=OrderedDict)
104
+
105
+ ''' replace the config context using args '''
106
+ opt['phase'] = args.phase
107
+ if args.gpu_ids is not None:
108
+ opt['gpu_ids'] = [int(id) for id in args.gpu_ids.split(',')]
109
+ if args.batch is not None:
110
+ opt['datasets'][opt['phase']]['dataloader']['args']['batch_size'] = args.batch
111
+
112
+ ''' set cuda environment '''
113
+ if len(opt['gpu_ids']) > 1:
114
+ opt['distributed'] = True
115
+ else:
116
+ opt['distributed'] = False
117
+
118
+ ''' update name '''
119
+ if args.debug:
120
+ opt['name'] = 'debug_{}'.format(opt['name'])
121
+ elif opt['finetune_norm']:
122
+ opt['name'] = 'finetune_{}'.format(opt['name'])
123
+ else:
124
+ opt['name'] = '{}_{}'.format(opt['phase'], opt['name'])
125
+
126
+ ''' set log directory '''
127
+ experiments_root = os.path.join(opt['path']['base_dir'], '{}_{}'.format(opt['name'], get_timestamp()))
128
+ mkdirs(experiments_root)
129
+
130
+ ''' save json '''
131
+ write_json(opt, '{}/config.json'.format(experiments_root))
132
+
133
+ ''' change folder relative hierarchy '''
134
+ opt['path']['experiments_root'] = experiments_root
135
+ for key, path in opt['path'].items():
136
+ if 'resume' not in key and 'base' not in key and 'root' not in key:
137
+ opt['path'][key] = os.path.join(experiments_root, path)
138
+ mkdirs(opt['path'][key])
139
+
140
+ ''' debug mode '''
141
+ if 'debug' in opt['name']:
142
+ opt['train'].update(opt['debug'])
143
+
144
+ ''' code backup '''
145
+ for name in os.listdir('.'):
146
+ if name in ['config', 'models', 'core', 'slurm', 'data']:
147
+ shutil.copytree(name, os.path.join(opt['path']['code'], name), ignore=shutil.ignore_patterns("*.pyc", "__pycache__"))
148
+ if '.py' in name or '.sh' in name:
149
+ shutil.copy(name, opt['path']['code'])
150
+ return dict_to_nonedict(opt)
151
+
152
+
153
+
154
+
155
+
experiments/train_nafnet_double_encoder_splitcaCond_splitcaUnet_sigmoid_noisen3_230611_035949/code/core/util.py ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+ import numpy as np
3
+ import math
4
+ import torch
5
+ from torch.nn.parallel import DistributedDataParallel as DDP
6
+ from torchvision.utils import make_grid
7
+
8
+
9
+ def get_rgb(image): # CHW
10
+ image = image.mul(0.5).add_(0.5)
11
+ image = image.mul(10000).add_(0.5).clamp_(0, 10000)
12
+ image = image.permute(1, 2, 0).cpu().detach().numpy() # HWC
13
+ image = image.astype(np.uint16)
14
+
15
+ r = image[:, :, 0]
16
+ g = image[:, :, 1]
17
+ b = image[:, :, 2]
18
+
19
+ r = np.clip(r, 0, 2000)
20
+ g = np.clip(g, 0, 2000)
21
+ b = np.clip(b, 0, 2000)
22
+
23
+ rgb = np.dstack((r, g, b))
24
+ rgb = rgb - np.nanmin(rgb)
25
+
26
+ if np.nanmax(rgb) == 0:
27
+ rgb = 255 * np.ones_like(rgb)
28
+ else:
29
+ rgb = 255 * (rgb / np.nanmax(rgb))
30
+
31
+ rgb[np.isnan(rgb)] = np.nanmean(rgb)
32
+ rgb = rgb.astype(np.uint8)
33
+ return rgb
34
+
35
+
36
+ def tensor2img(tensor, out_type=np.uint8, min_max=(-1, 1)): # 可视化v2.0
37
+ '''
38
+ Converts a torch Tensor into an image Numpy array
39
+ Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order
40
+ Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default)
41
+ '''
42
+ # tensor = tensor.clamp_(*min_max) # clamp
43
+ n_dim = tensor.dim()
44
+ if n_dim == 4:
45
+ n_img = len(tensor)
46
+ img_np = make_grid([torch.from_numpy(get_rgb(tensor[i])).permute(2, 0, 1) for i in range(n_img)], nrow=int(
47
+ math.sqrt(n_img)), normalize=False).numpy()
48
+ img_np = np.transpose(img_np, (1, 2, 0)) # HWC, RGB
49
+ elif n_dim == 3:
50
+ img_np = get_rgb(tensor)
51
+ elif n_dim == 2:
52
+ img_np = tensor.numpy()
53
+ else:
54
+ raise TypeError(
55
+ 'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim))
56
+ return img_np
57
+
58
+
59
+ # def tensor2img(tensor, out_type=np.uint8, min_max=(-1, 1)): # 可视化原作者的
60
+ # '''
61
+ # Converts a torch Tensor into an image Numpy array
62
+ # Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order
63
+ # Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default)
64
+ # '''
65
+ # tensor = tensor.clamp_(*min_max) # clamp
66
+ # n_dim = tensor.dim()
67
+ # if n_dim == 4:
68
+ # n_img = len(tensor)
69
+ # img_np = make_grid(tensor[:, :3, :, :], nrow=int(math.sqrt(n_img)), normalize=False).numpy()
70
+ # img_np = np.transpose(img_np, (1, 2, 0)) # HWC, RGB
71
+ # elif n_dim == 3:
72
+ # img_np = tensor[:3, :, :].numpy()
73
+ # img_np = np.transpose(img_np, (1, 2, 0)) # HWC, RGB
74
+ # elif n_dim == 2:
75
+ # img_np = tensor.numpy()
76
+ # else:
77
+ # raise TypeError('Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim))
78
+ # if out_type == np.uint8:
79
+ # img_np = ((img_np+1) * 127.5).round()
80
+ # # Important. Unlike matlab, numpy.unit8() WILL NOT round by default.
81
+ # return img_np.astype(out_type).squeeze()
82
+
83
+ # def tensor2img(tensor, out_type=np.uint8, min_max=(-1, 1)): # 可视化v1.0
84
+ # '''
85
+ # Converts a torch Tensor into an image Numpy array
86
+ # Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order
87
+ # Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default)
88
+ # '''
89
+ # tensor = tensor.clamp_(*min_max) # clamp
90
+ # def get_rgb_tensor(rgb):
91
+ # rgb = rgb*0.5+0.5
92
+ # rgb = rgb - torch.min(rgb)
93
+ # # treat saturated images, scale values
94
+ # if torch.max(rgb) == 0:
95
+ # rgb = 255 * torch.ones_like(rgb)
96
+ # else:
97
+ # rgb = 255 * (rgb / torch.max(rgb))
98
+ # return rgb.type(torch.uint8)
99
+ # tensor = get_rgb_tensor(tensor)
100
+ # n_dim = tensor.dim()
101
+ # if n_dim == 4:
102
+ # n_img = len(tensor)
103
+ # img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy()
104
+ # img_np = np.transpose(img_np, (1, 2, 0)) # HWC, RGB
105
+ # elif n_dim == 3:
106
+ # img_np = tensor.numpy()
107
+ # img_np = np.transpose(img_np, (1, 2, 0)) # HWC, RGB
108
+ # elif n_dim == 2:
109
+ # img_np = tensor.numpy()
110
+ # else:
111
+ # raise TypeError('Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim))
112
+ # # if out_type == np.uint8:
113
+ # # img_np = ((img_np+1) * 127.5).round()
114
+ # # Important. Unlike matlab, numpy.unit8() WILL NOT round by default.
115
+ # return img_np.astype(out_type).squeeze()
116
+
117
+ def postprocess(images):
118
+ return [tensor2img(image) for image in images]
119
+
120
+
121
+ def set_seed(seed, gl_seed=0):
122
+ """ set random seed, gl_seed used in worker_init_fn function """
123
+ if seed >= 0 and gl_seed >= 0:
124
+ seed += gl_seed
125
+ torch.manual_seed(seed)
126
+ torch.cuda.manual_seed_all(seed)
127
+ np.random.seed(seed)
128
+ random.seed(seed)
129
+
130
+ ''' change the deterministic and benchmark maybe cause uncertain convolution behavior.
131
+ speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html '''
132
+ if seed >= 0 and gl_seed >= 0: # slower, more reproducible
133
+ torch.backends.cudnn.deterministic = True
134
+ torch.backends.cudnn.benchmark = False
135
+ else: # faster, less reproducible
136
+ torch.backends.cudnn.deterministic = False
137
+ torch.backends.cudnn.benchmark = True
138
+
139
+
140
+ def set_gpu(args, distributed=False, rank=0):
141
+ """ set parameter to gpu or ddp """
142
+ if args is None:
143
+ return None
144
+ if distributed and isinstance(args, torch.nn.Module):
145
+ return DDP(args.cuda(), device_ids=[rank], output_device=rank, broadcast_buffers=True, find_unused_parameters=False)
146
+ else:
147
+ return args.cuda()
148
+
149
+
150
+ def set_device(args, distributed=False, rank=0):
151
+ """ set parameter to gpu or cpu """
152
+ if torch.cuda.is_available():
153
+ if isinstance(args, list):
154
+ return (set_gpu(item, distributed, rank) for item in args)
155
+ elif isinstance(args, dict):
156
+ return {key: set_gpu(args[key], distributed, rank) for key in args}
157
+ else:
158
+ args = set_gpu(args, distributed, rank)
159
+ return args