import torch import torch.nn as nn import torch.nn.functional as F from functools import partial import math from abc import abstractmethod class EmbedBlock(nn.Module): """ Any module where forward() takes embeddings as a second argument. """ @abstractmethod def forward(self, x, emb): """ Apply the module to `x` given `emb` embeddings. """ class EmbedSequential(nn.Sequential, EmbedBlock): """ A sequential module that passes embeddings to the children that support it as an extra input. """ def forward(self, x, emb): for layer in self: if isinstance(layer, EmbedBlock): x = layer(x, emb) else: x = layer(x) return x def gamma_embedding(gammas, dim, max_period=10000): """ Create sinusoidal timestep embeddings. :param gammas: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an [N x dim] Tensor of positional embeddings. """ half = dim // 2 freqs = torch.exp( -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half ).to(device=gammas.device) args = gammas[:, None].float() * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat( [embedding, torch.zeros_like(embedding[:, :1])], dim=-1) return embedding class LayerNormFunction(torch.autograd.Function): @staticmethod def forward(ctx, x, weight, bias, eps): ctx.eps = eps N, C, H, W = x.size() mu = x.mean(1, keepdim=True) var = (x - mu).pow(2).mean(1, keepdim=True) y = (x - mu) / (var + eps).sqrt() ctx.save_for_backward(y, var, weight) y = weight.view(1, C, 1, 1) * y + bias.view(1, C, 1, 1) return y @staticmethod def backward(ctx, grad_output): eps = ctx.eps N, C, H, W = grad_output.size() y, var, weight = ctx.saved_variables g = grad_output * weight.view(1, C, 1, 1) mean_g = g.mean(dim=1, keepdim=True) mean_gy = (g * y).mean(dim=1, keepdim=True) gx = 1. / torch.sqrt(var + eps) * (g - y * mean_gy - mean_g) return gx, (grad_output * y).sum(dim=3).sum(dim=2).sum(dim=0), grad_output.sum(dim=3).sum(dim=2).sum( dim=0), None class LayerNorm2d(nn.Module): def __init__(self, channels, eps=1e-6): super(LayerNorm2d, self).__init__() self.register_parameter('weight', nn.Parameter(torch.ones(channels))) self.register_parameter('bias', nn.Parameter(torch.zeros(channels))) self.eps = eps def forward(self, x): return LayerNormFunction.apply(x, self.weight, self.bias, self.eps) class SimpleGate(nn.Module): def forward(self, x): x1, x2 = x.chunk(2, dim=1) return x1 * x2 class CondNAFBlock(nn.Module): def __init__(self, c, DW_Expand=2, FFN_Expand=2, drop_out_rate=0.): super().__init__() dw_channel = c * DW_Expand self.conv1 = nn.Conv2d(in_channels=c, out_channels=dw_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True) self.conv2 = nn.Conv2d(in_channels=dw_channel, out_channels=dw_channel, kernel_size=3, padding=1, stride=1, groups=dw_channel, bias=True) self.conv3 = nn.Conv2d(in_channels=dw_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True) # Simplified Channel Attention # self.sca = nn.Sequential( # nn.AdaptiveAvgPool2d(1), # nn.Conv2d(in_channels=dw_channel // 2, out_channels=dw_channel // 2, kernel_size=1, padding=0, stride=1, # groups=1, bias=True), # ) self.sca_avg = nn.Sequential( nn.AdaptiveAvgPool2d(1), nn.Conv2d(in_channels=dw_channel // 4, out_channels=dw_channel // 4, kernel_size=1, padding=0, stride=1, groups=1, bias=True), ) self.sca_max = nn.Sequential( nn.AdaptiveMaxPool2d(1), nn.Conv2d(in_channels=dw_channel // 4, out_channels=dw_channel // 4, kernel_size=1, padding=0, stride=1, groups=1, bias=True), ) # SimpleGate self.sg = SimpleGate() ffn_channel = FFN_Expand * c self.conv4 = nn.Conv2d(in_channels=c, out_channels=ffn_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True) self.conv5 = nn.Conv2d(in_channels=ffn_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True) self.norm1 = LayerNorm2d(c) self.norm2 = LayerNorm2d(c) self.dropout1 = nn.Dropout( drop_out_rate) if drop_out_rate > 0. else nn.Identity() self.dropout2 = nn.Dropout( drop_out_rate) if drop_out_rate > 0. else nn.Identity() self.beta = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True) self.gamma = nn.Parameter(torch.zeros( (1, c, 1, 1)), requires_grad=True) def forward(self, inp): x = inp x = self.norm1(x) x = self.conv1(x) x = self.conv2(x) x = self.sg(x) x_avg, x_max = x.chunk(2, dim=1) x_avg = self.sca_avg(x_avg)*x_avg x_max = self.sca_max(x_max)*x_max x = torch.cat([x_avg, x_max], dim=1) x = self.conv3(x) x = self.dropout1(x) y = inp + x * self.beta x = self.conv4(self.norm2(y)) x = self.sg(x) x = self.conv5(x) x = self.dropout2(x) return y + x * self.gamma class NAFBlock(nn.Module): def __init__(self, c, DW_Expand=2, FFN_Expand=2, drop_out_rate=0.): super().__init__() dw_channel = c * DW_Expand self.conv1 = nn.Conv2d(in_channels=c, out_channels=dw_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True) self.conv2 = nn.Conv2d(in_channels=dw_channel, out_channels=dw_channel, kernel_size=3, padding=1, stride=1, groups=dw_channel, bias=True) self.conv3 = nn.Conv2d(in_channels=dw_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True) # Simplified Channel Attention # self.sca = nn.Sequential( # nn.AdaptiveAvgPool2d(1), # nn.Conv2d(in_channels=dw_channel // 2, out_channels=dw_channel // 2, kernel_size=1, padding=0, stride=1, # groups=1, bias=True), # ) self.sca_avg = nn.Sequential( nn.AdaptiveAvgPool2d(1), nn.Conv2d(in_channels=dw_channel // 4, out_channels=dw_channel // 4, kernel_size=1, padding=0, stride=1, groups=1, bias=True), ) self.sca_max = nn.Sequential( nn.AdaptiveMaxPool2d(1), nn.Conv2d(in_channels=dw_channel // 4, out_channels=dw_channel // 4, kernel_size=1, padding=0, stride=1, groups=1, bias=True), ) # SimpleGate self.sg = SimpleGate() ffn_channel = FFN_Expand * c self.conv4 = nn.Conv2d(in_channels=c, out_channels=ffn_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True) self.conv5 = nn.Conv2d(in_channels=ffn_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True) self.norm1 = LayerNorm2d(c) self.norm2 = LayerNorm2d(c) self.dropout1 = nn.Dropout( drop_out_rate) if drop_out_rate > 0. else nn.Identity() self.dropout2 = nn.Dropout( drop_out_rate) if drop_out_rate > 0. else nn.Identity() self.beta = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True) self.gamma = nn.Parameter(torch.zeros( (1, c, 1, 1)), requires_grad=True) # self.time_emb = nn.Sequential( # nn.SiLU(), # nn.Linear(256, c), # ) def forward(self, inp): x = inp x = self.norm1(x) x = self.conv1(x) x = self.conv2(x) x = self.sg(x) x_avg, x_max = x.chunk(2, dim=1) x_avg = self.sca_avg(x_avg)*x_avg x_max = self.sca_max(x_max)*x_max x = torch.cat([x_avg, x_max], dim=1) x = self.conv3(x) x = self.dropout1(x) y = inp + x * self.beta # y = y+self.time_emb(t)[..., None, None] x = self.conv4(self.norm2(y)) x = self.sg(x) x = self.conv5(x) x = self.dropout2(x) return y + x * self.gamma class UNCRTAINTS(nn.Module): def __init__( self, input_dim=15, out_conv=[13], width=64, middle_blk_num=1, enc_blk_nums=[1, 1, 1, 1], dec_blk_nums=[1, 1, 1, 1], encoder_widths=[128], decoder_widths=[128,128,128,128,128], out_nonlin_mean=False, out_nonlin_var='relu', agg_mode="att_group", encoder_norm="group", decoder_norm="batch", n_head=16, d_model=256, d_k=4, pad_value=0, padding_mode="reflect", positional_encoding=True, covmode='diag', scale_by=1, separate_out=False, use_v=False, block_type='mbconv', is_mono=False ): super().__init__() self.intro = nn.Conv2d(in_channels=input_dim, out_channels=width, kernel_size=3, padding=1, stride=1, groups=1, bias=True) # self.cond_intro = nn.Conv2d(in_channels=img_channel+2, out_channels=width, kernel_size=3, padding=1, stride=1, groups=1, # bias=True) self.ending = nn.Conv2d(in_channels=width, out_channels=out_conv[0], kernel_size=3, padding=1, stride=1, groups=1, bias=True) # self.inp_ending = nn.Conv2d(in_channels=img_channel, out_channels=3, kernel_size=3, padding=1, stride=1, groups=1, # bias=True) self.encoders = nn.ModuleList() self.cond_encoders = nn.ModuleList() self.decoders = nn.ModuleList() self.middle_blks = nn.ModuleList() self.ups = nn.ModuleList() self.downs = nn.ModuleList() self.cond_downs = nn.ModuleList() chan = width for num in enc_blk_nums: self.encoders.append( nn.Sequential( *[NAFBlock(chan) for _ in range(num)] ) ) self.cond_encoders.append( nn.Sequential( *[CondNAFBlock(chan) for _ in range(num)] ) ) self.downs.append( nn.Conv2d(chan, 2*chan, 2, 2) ) self.cond_downs.append( nn.Conv2d(chan, 2*chan, 2, 2) ) chan = chan * 2 self.middle_blks = \ nn.Sequential( *[NAFBlock(chan) for _ in range(middle_blk_num)] ) for num in dec_blk_nums: self.ups.append( nn.Sequential( nn.Conv2d(chan, chan * 2, 1, bias=False), nn.PixelShuffle(2) ) ) chan = chan // 2 self.decoders.append( nn.Sequential( *[NAFBlock(chan) for _ in range(num)] ) ) self.padder_size = 2 ** len(self.encoders) self.map = nn.Sequential( nn.Linear(64, 256), nn.SiLU(), nn.Linear(256, 256), ) def forward(self, inp): inp = self.check_image_size(inp) x = self.intro(inp) encs = [] for encoder, down in zip(self.encoders, self.downs): x = encoder(x) # b, c, h, w = cond.shape # tmp_cond = cond.view(b//3, 3, c, h, w).sum(dim=1) # tmp_cond = cond # x = x + tmp_cond encs.append(x) x = down(x) # cond = cond_down(cond) x = self.middle_blks(x) for decoder, up, enc_skip in zip(self.decoders, self.ups, encs[::-1]): x = up(x) x = x + enc_skip x = decoder(x) x = self.ending(x) # x = x + self.inp_ending(inp) return x def check_image_size(self, x): _, _, h, w = x.size() mod_pad_h = (self.padder_size - h % self.padder_size) % self.padder_size mod_pad_w = (self.padder_size - w % self.padder_size) % self.padder_size x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h)) return x if __name__ == '__main__': # unit test for ground resolution inp = torch.randn(1, 15, 256, 256) net = UNCRTAINTS( input_dim=15, out_conv=[13], width=64, middle_blk_num=1, enc_blk_nums=[1, 1, 1, 1], dec_blk_nums=[1, 1, 1, 1], ) out = net(inp) assert out.shape == (1, 13, 256, 256) # from thop import profile # out_shape = (1, 12, 384, 384) # input_shape = (1, 13, 384, 384) # model = DiffCR( # img_channel=13, # width=32, # middle_blk_num=1, # enc_blk_nums=[1, 1, 1, 1], # dec_blk_nums=[1, 1, 1, 1], # ) # # 使用 thop 的 profile 函数来获取 FLOPs 和参数量 # flops, params = profile(model, inputs=(torch.randn(out_shape), torch.ones(1,), torch.randn(input_shape))) # print(f"FLOPs: {flops / 1e9} G") # print(f"Parameters: {params / 1e6} M")