import numpy as np import scipy import scipy.signal as scisig def rescale(data, limits): return (data - limits[0]) / (limits[1] - limits[0]) def normalized_difference(channel1, channel2): subchan = channel1 - channel2 sumchan = channel1 + channel2 sumchan[sumchan == 0] = 0.001 # checking for 0 divisions return subchan / sumchan def get_shadow_mask(data_image): data_image = data_image / 10000. (ch, r, c) = data_image.shape shadowmask = np.zeros((r, c)).astype('float32') BB = data_image[1] BNIR = data_image[7] BSWIR1 = data_image[11] CSI = (BNIR + BSWIR1) / 2. t3 = 3/4 # cloud-score index threshold T3 = np.min(CSI) + t3 * (np.mean(CSI) - np.min(CSI)) t4 = 5 / 6 # water-body index threshold T4 = np.min(BB) + t4 * (np.mean(BB) - np.min(BB)) shadow_tf = np.logical_and(CSI < T3, BB < T4) shadowmask[shadow_tf] = -1 shadowmask = scisig.medfilt2d(shadowmask, 5) return shadowmask def get_cloud_mask(data_image, cloud_threshold, binarize=False, use_moist_check=False): '''Adapted from https://github.com/samsammurphy/cloud-masking-sentinel2/blob/master/cloud-masking-sentinel2.ipynb''' data_image = data_image / 10000. (ch, r, c) = data_image.shape # Cloud until proven otherwise score = np.ones((r, c)).astype('float32') # Clouds are reasonably bright in the blue and aerosol/cirrus bands. score = np.minimum(score, rescale(data_image[1], [0.1, 0.5])) score = np.minimum(score, rescale(data_image[0], [0.1, 0.3])) score = np.minimum(score, rescale((data_image[0] + data_image[10]), [0.4, 0.9])) score = np.minimum(score, rescale((data_image[3] + data_image[2] + data_image[1]), [0.2, 0.8])) if use_moist_check: # Clouds are moist ndmi = normalized_difference(data_image[7], data_image[11]) score = np.minimum(score, rescale(ndmi, [-0.1, 0.1])) # However, clouds are not snow. ndsi = normalized_difference(data_image[2], data_image[11]) score = np.minimum(score, rescale(ndsi, [0.8, 0.6])) boxsize = 7 box = np.ones((boxsize, boxsize)) / (boxsize ** 2) score = scipy.ndimage.morphology.grey_closing(score, size=(5, 5)) score = scisig.convolve2d(score, box, mode='same') score = np.clip(score, 0.00001, 1.0) if binarize: score[score >= cloud_threshold] = 1 score[score < cloud_threshold] = 0 return score # IN: [13 x H x W] S2 image (of arbitrary resolution H,W), scalar cloud detection threshold # OUT: cloud & shadow segmentation mask (of same resolution) # the multispectral S2 images are expected to have their default ranges and not be value-standardized yet # cloud_threshold: the higher the more conservative the masks (i.e. less pixels labeled clouds/shadows) def get_cloud_cloudshadow_mask(data_image, cloud_threshold): cloud_mask = get_cloud_mask(data_image, cloud_threshold, binarize=True) shadow_mask = get_shadow_mask(data_image) # encode clouds and shadows as segmentation masks cloud_cloudshadow_mask = np.zeros_like(cloud_mask) cloud_cloudshadow_mask[shadow_mask < 0] = -1 cloud_cloudshadow_mask[cloud_mask > 0] = 1 return cloud_cloudshadow_mask