File size: 5,421 Bytes
918db92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
from glob import glob
import argparse
import os
from typing import Tuple, List
import numpy as np
from mmeval import MeanIoU
from PIL import Image
from matplotlib import pyplot as plt
from mmseg.apis import MMSegInferencer
from vegseg.datasets import GrassDataset
from vegseg import models


def get_iou(pred: np.ndarray, gt: np.ndarray, num_classes=2):
    pred = pred[np.newaxis]
    gt = gt[np.newaxis]
    miou = MeanIoU(num_classes=num_classes)
    result = miou(pred, gt)
    return result["mIoU"] * 100


def get_args() -> Tuple[str, str, int]:
    """
    get args
    return:
        --device: device to use.
        --dataset_path: dataset path.
        --output_path: output path for saving.
    """
    parser = argparse.ArgumentParser()
    parser.add_argument("--device", type=str, default="cuda:4")
    parser.add_argument("--dataset_path", type=str, default="data/grass")
    args = parser.parse_args()
    return args.device, args.dataset_path


def give_color_to_mask(
    mask: Image.Image | np.ndarray, palette: List[int]
) -> Image.Image:
    """
    Args:
        mask: mask to color, numpy array or PIL Image.
        palette: palette of dataset.
    return:
        mask: mask with color.
    """
    if isinstance(mask, np.ndarray):
        mask = Image.fromarray(mask)
    mask = mask.convert("P")
    mask.putpalette(palette)
    return mask


def get_image_and_mask_paths(
    dataset_path: str, num: int
) -> Tuple[List[str], List[str]]:
    """
    get image and mask paths from dataset path.
    return:
        image_paths: list of image paths.
        mask_paths: list of mask paths.
    """
    image_paths = glob(os.path.join(dataset_path, "img_dir", "*", "*.tif"))
    if num != -1:
        image_paths = image_paths[:num]
    mask_paths = [
        filename.replace("tif", "png").replace("img_dir", "ann_dir")
        for filename in image_paths
    ]
    return image_paths, mask_paths


def get_palette() -> List[int]:
    """
    get palette of dataset.
    return:
        palette: list of palette.
    """
    palette = []
    palette_list = GrassDataset.METAINFO["palette"]
    for palette_item in palette_list:
        palette.extend(palette_item)
    return palette


def init_all_models(models_paths: List[str], device: str):
    """
    init all models
    Args:
        models_path (str): path to all models.
        device (str): device to use.
    Return:
        models (dict): dict of models.
    """
    models = {}
    for model_path in models_paths:
        config_path = glob(os.path.join(model_path, "*.py"))[0]
        weight_path = glob(os.path.join(model_path, "best_mIoU_iter_*.pth"))[0]
        inference = MMSegInferencer(
            config_path,
            weight_path,
            device=device,
            classes=GrassDataset.METAINFO["classes"],
            palette=GrassDataset.METAINFO["palette"],
        )
        model_name = model_path.split(os.path.sep)[-1]
        models[model_name] = inference
    return models


def main():
    device, dataset_path = get_args()
    image_paths, mask_paths = get_image_and_mask_paths(dataset_path, -1)
    palette = get_palette()
    models_paths = [
        r"work_dirs/fcn_r50",
        r"work_dirs/pspnet_r101",
        r"work_dirs/deeplabv3plus_r101",
        r"work_dirs/unet-s5-d16_deeplabv3",
        r"work_dirs/segformer_mit-b5",
        r"work_dirs/mask2former_swin_b",
        r"work_dirs/dinov2_upernet",
        r"work_dirs/experiment_p",
    ]
    models = init_all_models(models_paths, device)

    model_order = [
        "experiment_p",
        "fcn_r50",
        "pspnet_r101",
        "deeplabv3plus_r101",
        "unet-s5-d16_deeplabv3",
        "segformer_mit-b5",
        "mask2former_swin_b",
        "dinov2_upernet"
    ]

    os.makedirs("vis_results", exist_ok=True)
    for image_path, mask_path in zip(image_paths, mask_paths):
        result_eval = {}
        result_iou = {}
        mask = Image.open(mask_path)
        for model_name, inference in models.items():
            predictions: np.ndarray = inference(image_path)["predictions"]
            predictions = predictions.astype(np.uint8)
            result_eval[model_name] = predictions
            result_iou[model_name] = get_iou(predictions, np.array(mask), num_classes=5)

        # 根据iou 进行排序
        result_iou_sorted = sorted(result_iou.items(), key=lambda x: x[1], reverse=True)

        if result_iou_sorted[0][0] != "experiment_p":
            continue

        plt.figure(figsize=(32, 8))
        plt.subplots_adjust(wspace=0.01)
        plt.subplot(1, 10, 1)
        plt.imshow(Image.open(image_path))
        plt.axis("off")

        plt.subplot(1, 10, 2)
        plt.imshow(give_color_to_mask(mask, palette=palette))
        plt.axis("off")

        for i, model_name in enumerate(model_order):
            plt.subplot(1, 10, i + 3)
            plt.imshow(give_color_to_mask(result_eval[model_name], palette))
            plt.axis("off")

        base_name = os.path.basename(image_path).split(".")[0]
        diff_iou = result_iou_sorted[0][1] - result_iou_sorted[1][1]
        plt.savefig(
            f"vis_results/{diff_iou:.2f}_{base_name}.svg",
            dpi=300,
            bbox_inches="tight",
            pad_inches=0,
        )


if __name__ == "__main__":
    # example usage: python tools/vis_model.py --models work_dirs --device cuda:0 --dataset_path data/grass
    main()