File size: 5,421 Bytes
918db92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
from glob import glob
import argparse
import os
from typing import Tuple, List
import numpy as np
from mmeval import MeanIoU
from PIL import Image
from matplotlib import pyplot as plt
from mmseg.apis import MMSegInferencer
from vegseg.datasets import GrassDataset
from vegseg import models
def get_iou(pred: np.ndarray, gt: np.ndarray, num_classes=2):
pred = pred[np.newaxis]
gt = gt[np.newaxis]
miou = MeanIoU(num_classes=num_classes)
result = miou(pred, gt)
return result["mIoU"] * 100
def get_args() -> Tuple[str, str, int]:
"""
get args
return:
--device: device to use.
--dataset_path: dataset path.
--output_path: output path for saving.
"""
parser = argparse.ArgumentParser()
parser.add_argument("--device", type=str, default="cuda:4")
parser.add_argument("--dataset_path", type=str, default="data/grass")
args = parser.parse_args()
return args.device, args.dataset_path
def give_color_to_mask(
mask: Image.Image | np.ndarray, palette: List[int]
) -> Image.Image:
"""
Args:
mask: mask to color, numpy array or PIL Image.
palette: palette of dataset.
return:
mask: mask with color.
"""
if isinstance(mask, np.ndarray):
mask = Image.fromarray(mask)
mask = mask.convert("P")
mask.putpalette(palette)
return mask
def get_image_and_mask_paths(
dataset_path: str, num: int
) -> Tuple[List[str], List[str]]:
"""
get image and mask paths from dataset path.
return:
image_paths: list of image paths.
mask_paths: list of mask paths.
"""
image_paths = glob(os.path.join(dataset_path, "img_dir", "*", "*.tif"))
if num != -1:
image_paths = image_paths[:num]
mask_paths = [
filename.replace("tif", "png").replace("img_dir", "ann_dir")
for filename in image_paths
]
return image_paths, mask_paths
def get_palette() -> List[int]:
"""
get palette of dataset.
return:
palette: list of palette.
"""
palette = []
palette_list = GrassDataset.METAINFO["palette"]
for palette_item in palette_list:
palette.extend(palette_item)
return palette
def init_all_models(models_paths: List[str], device: str):
"""
init all models
Args:
models_path (str): path to all models.
device (str): device to use.
Return:
models (dict): dict of models.
"""
models = {}
for model_path in models_paths:
config_path = glob(os.path.join(model_path, "*.py"))[0]
weight_path = glob(os.path.join(model_path, "best_mIoU_iter_*.pth"))[0]
inference = MMSegInferencer(
config_path,
weight_path,
device=device,
classes=GrassDataset.METAINFO["classes"],
palette=GrassDataset.METAINFO["palette"],
)
model_name = model_path.split(os.path.sep)[-1]
models[model_name] = inference
return models
def main():
device, dataset_path = get_args()
image_paths, mask_paths = get_image_and_mask_paths(dataset_path, -1)
palette = get_palette()
models_paths = [
r"work_dirs/fcn_r50",
r"work_dirs/pspnet_r101",
r"work_dirs/deeplabv3plus_r101",
r"work_dirs/unet-s5-d16_deeplabv3",
r"work_dirs/segformer_mit-b5",
r"work_dirs/mask2former_swin_b",
r"work_dirs/dinov2_upernet",
r"work_dirs/experiment_p",
]
models = init_all_models(models_paths, device)
model_order = [
"experiment_p",
"fcn_r50",
"pspnet_r101",
"deeplabv3plus_r101",
"unet-s5-d16_deeplabv3",
"segformer_mit-b5",
"mask2former_swin_b",
"dinov2_upernet"
]
os.makedirs("vis_results", exist_ok=True)
for image_path, mask_path in zip(image_paths, mask_paths):
result_eval = {}
result_iou = {}
mask = Image.open(mask_path)
for model_name, inference in models.items():
predictions: np.ndarray = inference(image_path)["predictions"]
predictions = predictions.astype(np.uint8)
result_eval[model_name] = predictions
result_iou[model_name] = get_iou(predictions, np.array(mask), num_classes=5)
# 根据iou 进行排序
result_iou_sorted = sorted(result_iou.items(), key=lambda x: x[1], reverse=True)
if result_iou_sorted[0][0] != "experiment_p":
continue
plt.figure(figsize=(32, 8))
plt.subplots_adjust(wspace=0.01)
plt.subplot(1, 10, 1)
plt.imshow(Image.open(image_path))
plt.axis("off")
plt.subplot(1, 10, 2)
plt.imshow(give_color_to_mask(mask, palette=palette))
plt.axis("off")
for i, model_name in enumerate(model_order):
plt.subplot(1, 10, i + 3)
plt.imshow(give_color_to_mask(result_eval[model_name], palette))
plt.axis("off")
base_name = os.path.basename(image_path).split(".")[0]
diff_iou = result_iou_sorted[0][1] - result_iou_sorted[1][1]
plt.savefig(
f"vis_results/{diff_iou:.2f}_{base_name}.svg",
dpi=300,
bbox_inches="tight",
pad_inches=0,
)
if __name__ == "__main__":
# example usage: python tools/vis_model.py --models work_dirs --device cuda:0 --dataset_path data/grass
main()
|