|
|
|
import argparse |
|
import os |
|
|
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
from matplotlib.ticker import MultipleLocator |
|
from mmengine.config import Config, DictAction |
|
from mmengine.registry import init_default_scope |
|
from mmengine.utils import mkdir_or_exist, progressbar |
|
from PIL import Image |
|
|
|
from mmseg.registry import DATASETS |
|
|
|
init_default_scope('mmseg') |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser( |
|
description='Generate confusion matrix from segmentation results') |
|
parser.add_argument('config', help='test config file path') |
|
parser.add_argument( |
|
'prediction_path', help='prediction path where test folder result') |
|
parser.add_argument( |
|
'save_dir', help='directory where confusion matrix will be saved') |
|
parser.add_argument( |
|
'--show', action='store_true', help='show confusion matrix') |
|
parser.add_argument( |
|
'--color-theme', |
|
default='winter', |
|
help='theme of the matrix color map') |
|
parser.add_argument( |
|
'--title', |
|
default='Normalized Confusion Matrix', |
|
help='title of the matrix color map') |
|
parser.add_argument( |
|
'--cfg-options', |
|
nargs='+', |
|
action=DictAction, |
|
help='override some settings in the used config, the key-value pair ' |
|
'in xxx=yyy format will be merged into config file. If the value to ' |
|
'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' |
|
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' |
|
'Note that the quotation marks are necessary and that no white space ' |
|
'is allowed.') |
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
def calculate_confusion_matrix(dataset, results): |
|
"""Calculate the confusion matrix. |
|
|
|
Args: |
|
dataset (Dataset): Test or val dataset. |
|
results (list[ndarray]): A list of segmentation results in each image. |
|
""" |
|
n = len(dataset.METAINFO['classes']) |
|
confusion_matrix = np.zeros(shape=[n, n]) |
|
assert len(dataset) == len(results) |
|
ignore_index = dataset.ignore_index |
|
reduce_zero_label = dataset.reduce_zero_label |
|
prog_bar = progressbar.ProgressBar(len(results)) |
|
for idx, per_img_res in enumerate(results): |
|
res_segm = per_img_res |
|
gt_segm = dataset[idx]['data_samples'] \ |
|
.gt_sem_seg.data.squeeze().numpy().astype(np.uint8) |
|
gt_segm, res_segm = gt_segm.flatten(), res_segm.flatten() |
|
if reduce_zero_label: |
|
gt_segm = gt_segm - 1 |
|
to_ignore = gt_segm == ignore_index |
|
|
|
gt_segm, res_segm = gt_segm[~to_ignore], res_segm[~to_ignore] |
|
inds = n * gt_segm + res_segm |
|
mat = np.bincount(inds, minlength=n**2).reshape(n, n) |
|
confusion_matrix += mat |
|
prog_bar.update() |
|
return confusion_matrix |
|
|
|
|
|
def plot_confusion_matrix(confusion_matrix, |
|
labels, |
|
save_dir=None, |
|
show=True, |
|
title='Normalized Confusion Matrix', |
|
color_theme='OrRd'): |
|
"""Draw confusion matrix with matplotlib. |
|
|
|
Args: |
|
confusion_matrix (ndarray): The confusion matrix. |
|
labels (list[str]): List of class names. |
|
save_dir (str|optional): If set, save the confusion matrix plot to the |
|
given path. Default: None. |
|
show (bool): Whether to show the plot. Default: True. |
|
title (str): Title of the plot. Default: `Normalized Confusion Matrix`. |
|
color_theme (str): Theme of the matrix color map. Default: `winter`. |
|
""" |
|
|
|
per_label_sums = confusion_matrix.sum(axis=1)[:, np.newaxis] |
|
confusion_matrix = \ |
|
confusion_matrix.astype(np.float32) / per_label_sums * 100 |
|
|
|
num_classes = len(labels) |
|
fig, ax = plt.subplots( |
|
figsize=(2 * num_classes, 2 * num_classes * 0.8), dpi=300) |
|
cmap = plt.get_cmap(color_theme) |
|
im = ax.imshow(confusion_matrix, cmap=cmap) |
|
colorbar = plt.colorbar(mappable=im, ax=ax) |
|
colorbar.ax.tick_params(labelsize=20) |
|
|
|
title_font = {'weight': 'bold', 'size': 20} |
|
ax.set_title(title, fontdict=title_font) |
|
label_font = {'size': 40} |
|
plt.ylabel('Ground Truth Label', fontdict=label_font) |
|
plt.xlabel('Prediction Label', fontdict=label_font) |
|
|
|
|
|
xmajor_locator = MultipleLocator(1) |
|
xminor_locator = MultipleLocator(0.5) |
|
ax.xaxis.set_major_locator(xmajor_locator) |
|
ax.xaxis.set_minor_locator(xminor_locator) |
|
ymajor_locator = MultipleLocator(1) |
|
yminor_locator = MultipleLocator(0.5) |
|
ax.yaxis.set_major_locator(ymajor_locator) |
|
ax.yaxis.set_minor_locator(yminor_locator) |
|
|
|
|
|
ax.grid(True, which='minor', linestyle='-') |
|
|
|
|
|
ax.set_xticks(np.arange(num_classes)) |
|
ax.set_yticks(np.arange(num_classes)) |
|
ax.set_xticklabels(labels, fontsize=20) |
|
ax.set_yticklabels(labels, fontsize=20) |
|
|
|
ax.tick_params( |
|
axis='x', bottom=False, top=True, labelbottom=False, labeltop=True) |
|
plt.setp( |
|
ax.get_xticklabels(), rotation=45, ha='left', rotation_mode='anchor') |
|
|
|
|
|
for i in range(num_classes): |
|
for j in range(num_classes): |
|
ax.text( |
|
j, |
|
i, |
|
'{}%'.format( |
|
round(confusion_matrix[i, j], 2 |
|
) if not np.isnan(confusion_matrix[i, j]) else -1), |
|
ha='center', |
|
va='center', |
|
color='k', |
|
size=20) |
|
|
|
ax.set_ylim(len(confusion_matrix) - 0.5, -0.5) |
|
|
|
fig.tight_layout() |
|
if save_dir is not None: |
|
mkdir_or_exist(save_dir) |
|
plt.savefig( |
|
os.path.join(save_dir, 'confusion_matrix.png'), format='png') |
|
if show: |
|
plt.show() |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
|
|
cfg = Config.fromfile(args.config) |
|
if args.cfg_options is not None: |
|
cfg.merge_from_dict(args.cfg_options) |
|
|
|
results = [] |
|
for img in sorted(os.listdir(args.prediction_path)): |
|
img = os.path.join(args.prediction_path, img) |
|
image = Image.open(img) |
|
image = np.copy(image) |
|
results.append(image) |
|
|
|
assert isinstance(results, list) |
|
if isinstance(results[0], np.ndarray): |
|
pass |
|
else: |
|
raise TypeError('invalid type of prediction results') |
|
|
|
dataset = DATASETS.build(cfg.test_dataloader.dataset) |
|
confusion_matrix = calculate_confusion_matrix(dataset, results) |
|
plot_confusion_matrix( |
|
confusion_matrix, |
|
dataset.METAINFO['classes'], |
|
save_dir=args.save_dir, |
|
show=args.show, |
|
title=args.title, |
|
color_theme=args.color_theme) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|