|
|
|
import argparse |
|
import tempfile |
|
from pathlib import Path |
|
|
|
import torch |
|
from mmengine import Config, DictAction |
|
from mmengine.logging import MMLogger |
|
from mmengine.model import revert_sync_batchnorm |
|
from mmengine.registry import init_default_scope |
|
|
|
from mmseg.models import BaseSegmentor |
|
from mmseg.registry import MODELS |
|
from mmseg.structures import SegDataSample |
|
from vegseg import models |
|
try: |
|
from mmengine.analysis import get_model_complexity_info |
|
from mmengine.analysis.print_helper import _format_size |
|
except ImportError: |
|
raise ImportError('Please upgrade mmengine >= 0.6.0 to use this script.') |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser( |
|
description='Get the FLOPs of a segmentor') |
|
parser.add_argument('config', help='train config file path') |
|
parser.add_argument( |
|
'--shape', |
|
type=int, |
|
nargs='+', |
|
default=[2048, 1024], |
|
help='input image size') |
|
parser.add_argument( |
|
'--cfg-options', |
|
nargs='+', |
|
action=DictAction, |
|
help='override some settings in the used config, the key-value pair ' |
|
'in xxx=yyy format will be merged into config file. If the value to ' |
|
'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' |
|
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' |
|
'Note that the quotation marks are necessary and that no white space ' |
|
'is allowed.') |
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
def inference(args: argparse.Namespace, logger: MMLogger) -> dict: |
|
config_name = Path(args.config) |
|
|
|
if not config_name.exists(): |
|
logger.error(f'Config file {config_name} does not exist') |
|
|
|
cfg: Config = Config.fromfile(config_name) |
|
cfg.work_dir = tempfile.TemporaryDirectory().name |
|
cfg.log_level = 'WARN' |
|
if args.cfg_options is not None: |
|
cfg.merge_from_dict(args.cfg_options) |
|
|
|
init_default_scope(cfg.get('scope', 'mmseg')) |
|
|
|
if len(args.shape) == 1: |
|
input_shape = (3, args.shape[0], args.shape[0]) |
|
elif len(args.shape) == 2: |
|
input_shape = (3, ) + tuple(args.shape) |
|
else: |
|
raise ValueError('invalid input shape') |
|
result = {} |
|
|
|
model: BaseSegmentor = MODELS.build(cfg.model) |
|
if hasattr(model, 'auxiliary_head'): |
|
model.auxiliary_head = None |
|
if hasattr(model, 'teach_backbone'): |
|
model.teach_backbone = None |
|
if torch.cuda.is_available(): |
|
model.cuda() |
|
model = revert_sync_batchnorm(model) |
|
result['ori_shape'] = input_shape[-2:] |
|
result['pad_shape'] = input_shape[-2:] |
|
data_batch = { |
|
'inputs': [torch.rand(input_shape)], |
|
'data_samples': [SegDataSample(metainfo=result)] |
|
} |
|
data = model.data_preprocessor(data_batch) |
|
model.eval() |
|
if cfg.model.decode_head.type in ['MaskFormerHead', 'Mask2FormerHead']: |
|
|
|
raise NotImplementedError('MaskFormer and Mask2Former are not ' |
|
'supported yet.') |
|
outputs = get_model_complexity_info( |
|
model, |
|
input_shape=None, |
|
inputs=data['inputs'], |
|
show_table=False, |
|
show_arch=False) |
|
result['flops'] = _format_size(outputs['flops']) |
|
result['params'] = _format_size(outputs['params']) |
|
result['compute_type'] = 'direct: randomly generate a picture' |
|
return result |
|
|
|
|
|
def main(): |
|
|
|
args = parse_args() |
|
logger = MMLogger.get_instance(name='MMLogger') |
|
|
|
result = inference(args, logger) |
|
split_line = '=' * 30 |
|
ori_shape = result['ori_shape'] |
|
pad_shape = result['pad_shape'] |
|
flops = result['flops'] |
|
params = result['params'] |
|
compute_type = result['compute_type'] |
|
|
|
if pad_shape != ori_shape: |
|
print(f'{split_line}\nUse size divisor set input shape ' |
|
f'from {ori_shape} to {pad_shape}') |
|
print(f'{split_line}\nCompute type: {compute_type}\n' |
|
f'Input shape: {pad_shape}\nFlops: {flops}\n' |
|
f'Params: {params}\n{split_line}') |
|
print('!!!Please be cautious if you use the results in papers. ' |
|
'You may need to check if all ops are supported and verify ' |
|
'that the flops computation is correct.') |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|