|
|
|
|
|
import argparse |
|
|
import glob |
|
|
import os |
|
|
import os.path as osp |
|
|
import shutil |
|
|
import tempfile |
|
|
import zipfile |
|
|
|
|
|
import mmcv |
|
|
import numpy as np |
|
|
from mmengine.utils import ProgressBar, mkdir_or_exist |
|
|
from PIL import Image |
|
|
|
|
|
iSAID_palette = \ |
|
|
{ |
|
|
0: (0, 0, 0), |
|
|
1: (0, 0, 63), |
|
|
2: (0, 63, 63), |
|
|
3: (0, 63, 0), |
|
|
4: (0, 63, 127), |
|
|
5: (0, 63, 191), |
|
|
6: (0, 63, 255), |
|
|
7: (0, 127, 63), |
|
|
8: (0, 127, 127), |
|
|
9: (0, 0, 127), |
|
|
10: (0, 0, 191), |
|
|
11: (0, 0, 255), |
|
|
12: (0, 191, 127), |
|
|
13: (0, 127, 191), |
|
|
14: (0, 127, 255), |
|
|
15: (0, 100, 155) |
|
|
} |
|
|
|
|
|
iSAID_invert_palette = {v: k for k, v in iSAID_palette.items()} |
|
|
|
|
|
|
|
|
def iSAID_convert_from_color(arr_3d, palette=iSAID_invert_palette): |
|
|
"""RGB-color encoding to grayscale labels.""" |
|
|
arr_2d = np.zeros((arr_3d.shape[0], arr_3d.shape[1]), dtype=np.uint8) |
|
|
|
|
|
for c, i in palette.items(): |
|
|
m = np.all(arr_3d == np.array(c).reshape(1, 1, 3), axis=2) |
|
|
arr_2d[m] = i |
|
|
|
|
|
return arr_2d |
|
|
|
|
|
|
|
|
def slide_crop_image(src_path, out_dir, mode, patch_H, patch_W, overlap): |
|
|
img = np.asarray(Image.open(src_path).convert('RGB')) |
|
|
|
|
|
img_H, img_W, _ = img.shape |
|
|
|
|
|
if img_H < patch_H and img_W > patch_W: |
|
|
|
|
|
img = mmcv.impad(img, shape=(patch_H, img_W), pad_val=0) |
|
|
|
|
|
img_H, img_W, _ = img.shape |
|
|
|
|
|
elif img_H > patch_H and img_W < patch_W: |
|
|
|
|
|
img = mmcv.impad(img, shape=(img_H, patch_W), pad_val=0) |
|
|
|
|
|
img_H, img_W, _ = img.shape |
|
|
|
|
|
elif img_H < patch_H and img_W < patch_W: |
|
|
|
|
|
img = mmcv.impad(img, shape=(patch_H, patch_W), pad_val=0) |
|
|
|
|
|
img_H, img_W, _ = img.shape |
|
|
|
|
|
for x in range(0, img_W, patch_W - overlap): |
|
|
for y in range(0, img_H, patch_H - overlap): |
|
|
x_str = x |
|
|
x_end = x + patch_W |
|
|
if x_end > img_W: |
|
|
diff_x = x_end - img_W |
|
|
x_str -= diff_x |
|
|
x_end = img_W |
|
|
y_str = y |
|
|
y_end = y + patch_H |
|
|
if y_end > img_H: |
|
|
diff_y = y_end - img_H |
|
|
y_str -= diff_y |
|
|
y_end = img_H |
|
|
|
|
|
img_patch = img[y_str:y_end, x_str:x_end, :] |
|
|
img_patch = Image.fromarray(img_patch.astype(np.uint8)) |
|
|
image = osp.basename(src_path).split('.')[0] + '_' + str( |
|
|
y_str) + '_' + str(y_end) + '_' + str(x_str) + '_' + str( |
|
|
x_end) + '.png' |
|
|
|
|
|
save_path_image = osp.join(out_dir, 'img_dir', mode, str(image)) |
|
|
img_patch.save(save_path_image, format='BMP') |
|
|
|
|
|
|
|
|
def slide_crop_label(src_path, out_dir, mode, patch_H, patch_W, overlap): |
|
|
label = mmcv.imread(src_path, channel_order='rgb') |
|
|
label = iSAID_convert_from_color(label) |
|
|
img_H, img_W = label.shape |
|
|
|
|
|
if img_H < patch_H and img_W > patch_W: |
|
|
|
|
|
label = mmcv.impad(label, shape=(patch_H, img_W), pad_val=255) |
|
|
|
|
|
img_H = patch_H |
|
|
|
|
|
elif img_H > patch_H and img_W < patch_W: |
|
|
|
|
|
label = mmcv.impad(label, shape=(img_H, patch_W), pad_val=255) |
|
|
|
|
|
img_W = patch_W |
|
|
|
|
|
elif img_H < patch_H and img_W < patch_W: |
|
|
|
|
|
label = mmcv.impad(label, shape=(patch_H, patch_W), pad_val=255) |
|
|
|
|
|
img_H = patch_H |
|
|
img_W = patch_W |
|
|
|
|
|
for x in range(0, img_W, patch_W - overlap): |
|
|
for y in range(0, img_H, patch_H - overlap): |
|
|
x_str = x |
|
|
x_end = x + patch_W |
|
|
if x_end > img_W: |
|
|
diff_x = x_end - img_W |
|
|
x_str -= diff_x |
|
|
x_end = img_W |
|
|
y_str = y |
|
|
y_end = y + patch_H |
|
|
if y_end > img_H: |
|
|
diff_y = y_end - img_H |
|
|
y_str -= diff_y |
|
|
y_end = img_H |
|
|
|
|
|
lab_patch = label[y_str:y_end, x_str:x_end] |
|
|
lab_patch = Image.fromarray(lab_patch.astype(np.uint8), mode='P') |
|
|
|
|
|
image = osp.basename(src_path).split('.')[0].split( |
|
|
'_')[0] + '_' + str(y_str) + '_' + str(y_end) + '_' + str( |
|
|
x_str) + '_' + str(x_end) + '_instance_color_RGB' + '.png' |
|
|
lab_patch.save(osp.join(out_dir, 'ann_dir', mode, str(image))) |
|
|
|
|
|
|
|
|
def parse_args(): |
|
|
parser = argparse.ArgumentParser( |
|
|
description='Convert iSAID dataset to mmsegmentation format') |
|
|
parser.add_argument('dataset_path', help='iSAID folder path') |
|
|
parser.add_argument('--tmp_dir', help='path of the temporary directory') |
|
|
parser.add_argument('-o', '--out_dir', help='output path') |
|
|
|
|
|
parser.add_argument( |
|
|
'--patch_width', |
|
|
default=896, |
|
|
type=int, |
|
|
help='Width of the cropped image patch') |
|
|
parser.add_argument( |
|
|
'--patch_height', |
|
|
default=896, |
|
|
type=int, |
|
|
help='Height of the cropped image patch') |
|
|
parser.add_argument( |
|
|
'--overlap_area', default=384, type=int, help='Overlap area') |
|
|
args = parser.parse_args() |
|
|
return args |
|
|
|
|
|
|
|
|
def main(): |
|
|
args = parse_args() |
|
|
dataset_path = args.dataset_path |
|
|
|
|
|
patch_H, patch_W = args.patch_width, args.patch_height |
|
|
|
|
|
overlap = args.overlap_area |
|
|
|
|
|
if args.out_dir is None: |
|
|
out_dir = osp.join('data', 'iSAID') |
|
|
else: |
|
|
out_dir = args.out_dir |
|
|
|
|
|
print('Making directories...') |
|
|
mkdir_or_exist(osp.join(out_dir, 'img_dir', 'train')) |
|
|
mkdir_or_exist(osp.join(out_dir, 'img_dir', 'val')) |
|
|
mkdir_or_exist(osp.join(out_dir, 'img_dir', 'test')) |
|
|
|
|
|
mkdir_or_exist(osp.join(out_dir, 'ann_dir', 'train')) |
|
|
mkdir_or_exist(osp.join(out_dir, 'ann_dir', 'val')) |
|
|
mkdir_or_exist(osp.join(out_dir, 'ann_dir', 'test')) |
|
|
|
|
|
assert os.path.exists(os.path.join(dataset_path, 'train')), \ |
|
|
f'train is not in {dataset_path}' |
|
|
assert os.path.exists(os.path.join(dataset_path, 'val')), \ |
|
|
f'val is not in {dataset_path}' |
|
|
assert os.path.exists(os.path.join(dataset_path, 'test')), \ |
|
|
f'test is not in {dataset_path}' |
|
|
|
|
|
with tempfile.TemporaryDirectory(dir=args.tmp_dir) as tmp_dir: |
|
|
for dataset_mode in ['train', 'val', 'test']: |
|
|
|
|
|
|
|
|
print(f'Extracting {dataset_mode}ing.zip...') |
|
|
img_zipp_list = glob.glob( |
|
|
os.path.join(dataset_path, dataset_mode, 'images', '*.zip')) |
|
|
print('Find the data', img_zipp_list) |
|
|
for img_zipp in img_zipp_list: |
|
|
zip_file = zipfile.ZipFile(img_zipp) |
|
|
zip_file.extractall(os.path.join(tmp_dir, dataset_mode, 'img')) |
|
|
src_path_list = glob.glob( |
|
|
os.path.join(tmp_dir, dataset_mode, 'img', 'images', '*.png')) |
|
|
|
|
|
src_prog_bar = ProgressBar(len(src_path_list)) |
|
|
for i, img_path in enumerate(src_path_list): |
|
|
if dataset_mode != 'test': |
|
|
slide_crop_image(img_path, out_dir, dataset_mode, patch_H, |
|
|
patch_W, overlap) |
|
|
|
|
|
else: |
|
|
shutil.move(img_path, |
|
|
os.path.join(out_dir, 'img_dir', dataset_mode)) |
|
|
src_prog_bar.update() |
|
|
|
|
|
if dataset_mode != 'test': |
|
|
label_zipp_list = glob.glob( |
|
|
os.path.join(dataset_path, dataset_mode, 'Semantic_masks', |
|
|
'*.zip')) |
|
|
for label_zipp in label_zipp_list: |
|
|
zip_file = zipfile.ZipFile(label_zipp) |
|
|
zip_file.extractall( |
|
|
os.path.join(tmp_dir, dataset_mode, 'lab')) |
|
|
|
|
|
lab_path_list = glob.glob( |
|
|
os.path.join(tmp_dir, dataset_mode, 'lab', 'images', |
|
|
'*.png')) |
|
|
lab_prog_bar = ProgressBar(len(lab_path_list)) |
|
|
for i, lab_path in enumerate(lab_path_list): |
|
|
slide_crop_label(lab_path, out_dir, dataset_mode, patch_H, |
|
|
patch_W, overlap) |
|
|
lab_prog_bar.update() |
|
|
|
|
|
print('Removing the temporary files...') |
|
|
|
|
|
print('Done!') |
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
main() |
|
|
|