ktda-models / tools /dataset_tools /create_dataset.py
XavierJiezou's picture
Add files using upload-large-folder tool
918db92 verified
import os
from glob import glob
from typing import List, Literal
import shutil
from PIL import Image
import json
import numpy as np
from rich.progress import track
import cv2
from vegseg.datasets import GrassDataset
from sklearn.model_selection import train_test_split
import argparse
def give_color_to_mask(mask: np.ndarray, palette: List[int]) -> Image.Image:
"""
Convert mask to color image
Args:
mask (np.ndarray): numpy array of shape (H, W)
palette (List[int]): list of RGB values
return:
color_mask (Image.Image): PIL Image of shape (H, W)
"""
im = Image.fromarray(mask).convert("P")
im.putpalette(palette)
# exit(0)
return im
def get_mask_by_json(filename: str) -> np.ndarray:
"""
Convert json to mask
Args:
filename (str): path to json file
return:
mask (np.ndarray): numpy array of shape (H, W)
"""
json_file = json.load(open(filename))
img_height = json_file["imageHeight"]
img_width = json_file["imageWidth"]
mask = np.zeros((img_height, img_width), dtype="int8")
for shape in json_file["shapes"]:
label = int(shape["label"])
label -= 1
label = max(label, 0)
points = np.array(shape["points"]).astype(np.int32)
cv2.fillPoly(mask, [points], label)
return mask
def json_to_image(json_path, image_path):
"""
Convert json to image
Args:
json_path (str): path to json file
image_path (str): path to save image
return: None
"""
mask = get_mask_by_json(json_path)
palette_list = GrassDataset.METAINFO["palette"]
palette = []
for palette_item in palette_list:
palette.extend(palette_item)
color_mask = give_color_to_mask(mask, palette)
color_mask.save(image_path)
def create_dataset(
image_paths: List[str],
ann_paths: List[str],
phase: Literal["train", "val"],
output_dir: str,
):
"""
Args:
image_paths (List[str]): list of image paths
ann_paths (List[str]): list of annotation paths
phase (Literal["train", "val"]): train or val
output_dir (str): path to save dataset
Return:
None
"""
for image_path, ann_path in track(
zip(image_paths, ann_paths),
description=f"{phase} dataset",
total=len(image_paths),
):
ann_save_path = os.path.join(
output_dir,
"ann_dir",
phase,
os.path.basename(ann_path).replace(".json", ".png"),
)
# 将image复制到指定路径
new_image_path = os.path.join(
output_dir, "img_dir", phase, os.path.basename(image_path)
)
shutil.copy(image_path, new_image_path)
# 将ann保存到指定路径
json_to_image(ann_path, ann_save_path)
def split_dataset(
root_path: str,
output_path: str,
split_ratio: float = 0.8,
shuffle: bool = True,
seed: int = 42,
) -> None:
"""
Split a dataset into train, test, and validation sets.
Args:
root_path (str): Path to the dataset. The dataset should be organized as follows:
dataset_path/
image1.tif
image2.tif
...
imageN.tif
label1.tif
label2.tif
...
labelN.tif
output_path (str): Path to the output directory where the split dataset will be saved.
split_ratio (float, optional): Ratio of the dataset to be used for training. Defaults to 0.8.
seed (int, optional): Seed for the random number generator. Defaults to 42.
"""
image_paths = glob(os.path.join(root_path, "*.tif"))
ann_paths = [filename.replace("tif", "json") for filename in image_paths]
assert len(image_paths) == len(
ann_paths
), "Number of images and annotations do not match"
print(f"images: {len(image_paths)}, annotations: {len(ann_paths)}")
image_train, image_test, ann_train, ann_test = train_test_split(
image_paths,
ann_paths,
train_size=split_ratio,
random_state=seed,
shuffle=shuffle,
)
print(f"train: {len(image_train)}, test: {len(image_test)}")
os.makedirs(os.path.join(output_path, "img_dir", "train"), exist_ok=True)
os.makedirs(os.path.join(output_path, "img_dir", "val"), exist_ok=True)
os.makedirs(os.path.join(output_path, "ann_dir", "train"), exist_ok=True)
os.makedirs(os.path.join(output_path, "ann_dir", "val"), exist_ok=True)
create_dataset(image_train, ann_train, "train", output_path)
create_dataset(image_test, ann_test, "val", output_path)
def main():
args = argparse.ArgumentParser()
args.add_argument("--root", type=str, default="data/raw_data")
args.add_argument("--output", type=str, default="data/grass")
args.add_argument("--split_ratio", type=float, default=0.8)
args.add_argument("--seed", type=int, default=42)
args.add_argument("--shuffle", type=bool, default=True)
args = args.parse_args()
root: str = args.root
output_path: str = args.output
split_ratio: float = args.split_ratio
seed: int = args.seed
shuffle: bool = args.shuffle
split_dataset(
root_path=root,
output_path=output_path,
split_ratio=split_ratio,
shuffle=shuffle,
seed=seed,
)
print("数据集划分完成")
if __name__ == "__main__":
# 使用示例 : python src/tools/split_dataset.py --root data/raw_data --output data/grass --split_ratio 0.8 --seed 42 --shuffle True
main()