|
|
|
import argparse |
|
|
|
import numpy as np |
|
import torch |
|
import torch._C |
|
import torch.serialization |
|
from mmengine import Config |
|
from mmengine.runner import load_checkpoint |
|
from torch import nn |
|
|
|
from mmseg.models import build_segmentor |
|
|
|
torch.manual_seed(3) |
|
|
|
|
|
def digit_version(version_str): |
|
digit_version = [] |
|
for x in version_str.split('.'): |
|
if x.isdigit(): |
|
digit_version.append(int(x)) |
|
elif x.find('rc') != -1: |
|
patch_version = x.split('rc') |
|
digit_version.append(int(patch_version[0]) - 1) |
|
digit_version.append(int(patch_version[1])) |
|
return digit_version |
|
|
|
|
|
def check_torch_version(): |
|
torch_minimum_version = '1.8.0' |
|
torch_version = digit_version(torch.__version__) |
|
|
|
assert (torch_version >= digit_version(torch_minimum_version)), \ |
|
f'Torch=={torch.__version__} is not support for converting to ' \ |
|
f'torchscript. Please install pytorch>={torch_minimum_version}.' |
|
|
|
|
|
def _convert_batchnorm(module): |
|
module_output = module |
|
if isinstance(module, torch.nn.SyncBatchNorm): |
|
module_output = torch.nn.BatchNorm2d(module.num_features, module.eps, |
|
module.momentum, module.affine, |
|
module.track_running_stats) |
|
if module.affine: |
|
module_output.weight.data = module.weight.data.clone().detach() |
|
module_output.bias.data = module.bias.data.clone().detach() |
|
|
|
module_output.weight.requires_grad = module.weight.requires_grad |
|
module_output.bias.requires_grad = module.bias.requires_grad |
|
module_output.running_mean = module.running_mean |
|
module_output.running_var = module.running_var |
|
module_output.num_batches_tracked = module.num_batches_tracked |
|
for name, child in module.named_children(): |
|
module_output.add_module(name, _convert_batchnorm(child)) |
|
del module |
|
return module_output |
|
|
|
|
|
def _demo_mm_inputs(input_shape, num_classes): |
|
"""Create a superset of inputs needed to run test or train batches. |
|
|
|
Args: |
|
input_shape (tuple): |
|
input batch dimensions |
|
num_classes (int): |
|
number of semantic classes |
|
""" |
|
(N, C, H, W) = input_shape |
|
rng = np.random.RandomState(0) |
|
imgs = rng.rand(*input_shape) |
|
segs = rng.randint( |
|
low=0, high=num_classes - 1, size=(N, 1, H, W)).astype(np.uint8) |
|
img_metas = [{ |
|
'img_shape': (H, W, C), |
|
'ori_shape': (H, W, C), |
|
'pad_shape': (H, W, C), |
|
'filename': '<demo>.png', |
|
'scale_factor': 1.0, |
|
'flip': False, |
|
} for _ in range(N)] |
|
mm_inputs = { |
|
'imgs': torch.FloatTensor(imgs).requires_grad_(True), |
|
'img_metas': img_metas, |
|
'gt_semantic_seg': torch.LongTensor(segs) |
|
} |
|
return mm_inputs |
|
|
|
|
|
def pytorch2libtorch(model, |
|
input_shape, |
|
show=False, |
|
output_file='tmp.pt', |
|
verify=False): |
|
"""Export Pytorch model to TorchScript model and verify the outputs are |
|
same between Pytorch and TorchScript. |
|
|
|
Args: |
|
model (nn.Module): Pytorch model we want to export. |
|
input_shape (tuple): Use this input shape to construct |
|
the corresponding dummy input and execute the model. |
|
show (bool): Whether print the computation graph. Default: False. |
|
output_file (string): The path to where we store the |
|
output TorchScript model. Default: `tmp.pt`. |
|
verify (bool): Whether compare the outputs between |
|
Pytorch and TorchScript. Default: False. |
|
""" |
|
if isinstance(model.decode_head, nn.ModuleList): |
|
num_classes = model.decode_head[-1].num_classes |
|
else: |
|
num_classes = model.decode_head.num_classes |
|
|
|
mm_inputs = _demo_mm_inputs(input_shape, num_classes) |
|
|
|
imgs = mm_inputs.pop('imgs') |
|
|
|
|
|
model.forward = model.forward_dummy |
|
model.eval() |
|
traced_model = torch.jit.trace( |
|
model, |
|
example_inputs=imgs, |
|
check_trace=verify, |
|
) |
|
|
|
if show: |
|
print(traced_model.graph) |
|
|
|
traced_model.save(output_file) |
|
print(f'Successfully exported TorchScript model: {output_file}') |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser( |
|
description='Convert MMSeg to TorchScript') |
|
parser.add_argument('config', help='test config file path') |
|
parser.add_argument('--checkpoint', help='checkpoint file', default=None) |
|
parser.add_argument( |
|
'--show', action='store_true', help='show TorchScript graph') |
|
parser.add_argument( |
|
'--verify', action='store_true', help='verify the TorchScript model') |
|
parser.add_argument('--output-file', type=str, default='tmp.pt') |
|
parser.add_argument( |
|
'--shape', |
|
type=int, |
|
nargs='+', |
|
default=[512, 512], |
|
help='input image size (height, width)') |
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
if __name__ == '__main__': |
|
args = parse_args() |
|
check_torch_version() |
|
|
|
if len(args.shape) == 1: |
|
input_shape = (1, 3, args.shape[0], args.shape[0]) |
|
elif len(args.shape) == 2: |
|
input_shape = ( |
|
1, |
|
3, |
|
) + tuple(args.shape) |
|
else: |
|
raise ValueError('invalid input shape') |
|
|
|
cfg = Config.fromfile(args.config) |
|
cfg.model.pretrained = None |
|
|
|
|
|
cfg.model.train_cfg = None |
|
segmentor = build_segmentor( |
|
cfg.model, train_cfg=None, test_cfg=cfg.get('test_cfg')) |
|
|
|
segmentor = _convert_batchnorm(segmentor) |
|
|
|
if args.checkpoint: |
|
load_checkpoint(segmentor, args.checkpoint, map_location='cpu') |
|
|
|
|
|
pytorch2libtorch( |
|
segmentor, |
|
input_shape, |
|
show=args.show, |
|
output_file=args.output_file, |
|
verify=args.verify) |
|
|