|
|
|
import argparse |
|
import os.path as osp |
|
from collections import OrderedDict |
|
|
|
import mmengine |
|
import torch |
|
from mmengine.runner import CheckpointLoader |
|
|
|
|
|
def convert_vitlayer(paras): |
|
new_para_name = '' |
|
if paras[0] == 'ln_1': |
|
new_para_name = '.'.join(['ln1'] + paras[1:]) |
|
elif paras[0] == 'attn': |
|
new_para_name = '.'.join(['attn.attn'] + paras[1:]) |
|
elif paras[0] == 'ln_2': |
|
new_para_name = '.'.join(['ln2'] + paras[1:]) |
|
elif paras[0] == 'mlp': |
|
if paras[1] == 'c_fc': |
|
new_para_name = '.'.join(['ffn.layers.0.0'] + paras[-1:]) |
|
else: |
|
new_para_name = '.'.join(['ffn.layers.1'] + paras[-1:]) |
|
else: |
|
print(f'Wrong for {paras}') |
|
return new_para_name |
|
|
|
|
|
def convert_translayer(paras): |
|
new_para_name = '' |
|
if paras[0] == 'attn': |
|
new_para_name = '.'.join(['attentions.0.attn'] + paras[1:]) |
|
elif paras[0] == 'ln_1': |
|
new_para_name = '.'.join(['norms.0'] + paras[1:]) |
|
elif paras[0] == 'ln_2': |
|
new_para_name = '.'.join(['norms.1'] + paras[1:]) |
|
elif paras[0] == 'mlp': |
|
if paras[1] == 'c_fc': |
|
new_para_name = '.'.join(['ffns.0.layers.0.0'] + paras[2:]) |
|
elif paras[1] == 'c_proj': |
|
new_para_name = '.'.join(['ffns.0.layers.1'] + paras[2:]) |
|
else: |
|
print(f'Wrong for {paras}') |
|
else: |
|
print(f'Wrong for {paras}') |
|
return new_para_name |
|
|
|
|
|
def convert_key_name(ckpt, visual_split): |
|
new_ckpt = OrderedDict() |
|
for k, v in ckpt.items(): |
|
key_list = k.split('.') |
|
if key_list[0] == 'visual': |
|
new_transform_name = 'image_encoder' |
|
if key_list[1] == 'class_embedding': |
|
new_name = '.'.join([new_transform_name, 'cls_token']) |
|
elif key_list[1] == 'positional_embedding': |
|
new_name = '.'.join([new_transform_name, 'pos_embed']) |
|
elif key_list[1] == 'conv1': |
|
new_name = '.'.join([ |
|
new_transform_name, 'patch_embed.projection', key_list[2] |
|
]) |
|
elif key_list[1] == 'ln_pre': |
|
new_name = '.'.join( |
|
[new_transform_name, key_list[1], key_list[2]]) |
|
elif key_list[1] == 'transformer': |
|
new_layer_name = 'layers' |
|
layer_index = key_list[3] |
|
paras = key_list[4:] |
|
if int(layer_index) < visual_split: |
|
new_para_name = convert_vitlayer(paras) |
|
new_name = '.'.join([ |
|
new_transform_name, new_layer_name, layer_index, |
|
new_para_name |
|
]) |
|
else: |
|
new_para_name = convert_translayer(paras) |
|
new_transform_name = 'decode_head.rec_with_attnbias' |
|
new_layer_name = 'layers' |
|
layer_index = str(int(layer_index) - visual_split) |
|
new_name = '.'.join([ |
|
new_transform_name, new_layer_name, layer_index, |
|
new_para_name |
|
]) |
|
elif key_list[1] == 'proj': |
|
new_name = 'decode_head.rec_with_attnbias.proj.weight' |
|
elif key_list[1] == 'ln_post': |
|
new_name = k.replace('visual', 'decode_head.rec_with_attnbias') |
|
else: |
|
print(f'pop parameter: {k}') |
|
continue |
|
else: |
|
text_encoder_name = 'text_encoder' |
|
if key_list[0] == 'transformer': |
|
layer_name = 'transformer' |
|
layer_index = key_list[2] |
|
paras = key_list[3:] |
|
new_para_name = convert_translayer(paras) |
|
new_name = '.'.join([ |
|
text_encoder_name, layer_name, layer_index, new_para_name |
|
]) |
|
elif key_list[0] in [ |
|
'positional_embedding', 'text_projection', 'bg_embed', |
|
'attn_mask', 'logit_scale', 'token_embedding', 'ln_final' |
|
]: |
|
new_name = 'text_encoder.' + k |
|
else: |
|
print(f'pop parameter: {k}') |
|
continue |
|
new_ckpt[new_name] = v |
|
|
|
return new_ckpt |
|
|
|
|
|
def convert_tensor(ckpt): |
|
cls_token = ckpt['image_encoder.cls_token'] |
|
new_cls_token = cls_token.unsqueeze(0).unsqueeze(0) |
|
ckpt['image_encoder.cls_token'] = new_cls_token |
|
pos_embed = ckpt['image_encoder.pos_embed'] |
|
new_pos_embed = pos_embed.unsqueeze(0) |
|
ckpt['image_encoder.pos_embed'] = new_pos_embed |
|
proj_weight = ckpt['decode_head.rec_with_attnbias.proj.weight'] |
|
new_proj_weight = proj_weight.transpose(1, 0) |
|
ckpt['decode_head.rec_with_attnbias.proj.weight'] = new_proj_weight |
|
return ckpt |
|
|
|
|
|
def main(): |
|
parser = argparse.ArgumentParser( |
|
description='Convert keys in timm pretrained vit models to ' |
|
'MMSegmentation style.') |
|
parser.add_argument('src', help='src model path or url') |
|
|
|
parser.add_argument('dst', help='save path') |
|
args = parser.parse_args() |
|
|
|
if any([s in args.src for s in ['B-16', 'b16', 'base_patch16']]): |
|
visual_split = 9 |
|
elif any([s in args.src for s in ['L-14', 'l14', 'large_patch14']]): |
|
visual_split = 18 |
|
else: |
|
print('Make sure the clip model is ViT-B/16 or ViT-L/14!') |
|
visual_split = -1 |
|
checkpoint = CheckpointLoader.load_checkpoint(args.src, map_location='cpu') |
|
if isinstance(checkpoint, torch.jit.RecursiveScriptModule): |
|
state_dict = checkpoint.state_dict() |
|
else: |
|
if 'state_dict' in checkpoint: |
|
|
|
state_dict = checkpoint['state_dict'] |
|
elif 'model' in checkpoint: |
|
|
|
state_dict = checkpoint['model'] |
|
else: |
|
state_dict = checkpoint |
|
weight = convert_key_name(state_dict, visual_split) |
|
weight = convert_tensor(weight) |
|
mmengine.mkdir_or_exist(osp.dirname(args.dst)) |
|
torch.save(weight, args.dst) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|