|
|
|
import argparse |
|
import os.path as osp |
|
from collections import OrderedDict |
|
|
|
import mmengine |
|
import torch |
|
from mmengine.runner import CheckpointLoader |
|
|
|
|
|
def convert_mit(ckpt): |
|
new_ckpt = OrderedDict() |
|
|
|
for k, v in ckpt.items(): |
|
if k.startswith('head'): |
|
continue |
|
|
|
elif k.startswith('patch_embed'): |
|
stage_i = int(k.split('.')[0].replace('patch_embed', '')) |
|
new_k = k.replace(f'patch_embed{stage_i}', f'layers.{stage_i-1}.0') |
|
new_v = v |
|
if 'proj.' in new_k: |
|
new_k = new_k.replace('proj.', 'projection.') |
|
|
|
elif k.startswith('block'): |
|
stage_i = int(k.split('.')[0].replace('block', '')) |
|
new_k = k.replace(f'block{stage_i}', f'layers.{stage_i-1}.1') |
|
new_v = v |
|
if 'attn.q.' in new_k: |
|
sub_item_k = k.replace('q.', 'kv.') |
|
new_k = new_k.replace('q.', 'attn.in_proj_') |
|
new_v = torch.cat([v, ckpt[sub_item_k]], dim=0) |
|
elif 'attn.kv.' in new_k: |
|
continue |
|
elif 'attn.proj.' in new_k: |
|
new_k = new_k.replace('proj.', 'attn.out_proj.') |
|
elif 'attn.sr.' in new_k: |
|
new_k = new_k.replace('sr.', 'sr.') |
|
elif 'mlp.' in new_k: |
|
string = f'{new_k}-' |
|
new_k = new_k.replace('mlp.', 'ffn.layers.') |
|
if 'fc1.weight' in new_k or 'fc2.weight' in new_k: |
|
new_v = v.reshape((*v.shape, 1, 1)) |
|
new_k = new_k.replace('fc1.', '0.') |
|
new_k = new_k.replace('dwconv.dwconv.', '1.') |
|
new_k = new_k.replace('fc2.', '4.') |
|
string += f'{new_k} {v.shape}-{new_v.shape}' |
|
|
|
elif k.startswith('norm'): |
|
stage_i = int(k.split('.')[0].replace('norm', '')) |
|
new_k = k.replace(f'norm{stage_i}', f'layers.{stage_i-1}.2') |
|
new_v = v |
|
else: |
|
new_k = k |
|
new_v = v |
|
new_ckpt[new_k] = new_v |
|
return new_ckpt |
|
|
|
|
|
def main(): |
|
parser = argparse.ArgumentParser( |
|
description='Convert keys in official pretrained segformer to ' |
|
'MMSegmentation style.') |
|
parser.add_argument('src', help='src model path or url') |
|
|
|
parser.add_argument('dst', help='save path') |
|
args = parser.parse_args() |
|
|
|
checkpoint = CheckpointLoader.load_checkpoint(args.src, map_location='cpu') |
|
if 'state_dict' in checkpoint: |
|
state_dict = checkpoint['state_dict'] |
|
elif 'model' in checkpoint: |
|
state_dict = checkpoint['model'] |
|
else: |
|
state_dict = checkpoint |
|
weight = convert_mit(state_dict) |
|
mmengine.mkdir_or_exist(osp.dirname(args.dst)) |
|
torch.save(weight, args.dst) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|