|
|
|
import argparse |
|
import os.path as osp |
|
from collections import OrderedDict |
|
|
|
import mmengine |
|
import torch |
|
from mmengine.runner import CheckpointLoader |
|
|
|
|
|
def convert_swin(ckpt): |
|
new_ckpt = OrderedDict() |
|
|
|
def correct_unfold_reduction_order(x): |
|
out_channel, in_channel = x.shape |
|
x = x.reshape(out_channel, 4, in_channel // 4) |
|
x = x[:, [0, 2, 1, 3], :].transpose(1, |
|
2).reshape(out_channel, in_channel) |
|
return x |
|
|
|
def correct_unfold_norm_order(x): |
|
in_channel = x.shape[0] |
|
x = x.reshape(4, in_channel // 4) |
|
x = x[[0, 2, 1, 3], :].transpose(0, 1).reshape(in_channel) |
|
return x |
|
|
|
for k, v in ckpt.items(): |
|
if k.startswith('head'): |
|
continue |
|
elif k.startswith('layers'): |
|
new_v = v |
|
if 'attn.' in k: |
|
new_k = k.replace('attn.', 'attn.w_msa.') |
|
elif 'mlp.' in k: |
|
if 'mlp.fc1.' in k: |
|
new_k = k.replace('mlp.fc1.', 'ffn.layers.0.0.') |
|
elif 'mlp.fc2.' in k: |
|
new_k = k.replace('mlp.fc2.', 'ffn.layers.1.') |
|
else: |
|
new_k = k.replace('mlp.', 'ffn.') |
|
elif 'downsample' in k: |
|
new_k = k |
|
if 'reduction.' in k: |
|
new_v = correct_unfold_reduction_order(v) |
|
elif 'norm.' in k: |
|
new_v = correct_unfold_norm_order(v) |
|
else: |
|
new_k = k |
|
new_k = new_k.replace('layers', 'stages', 1) |
|
elif k.startswith('patch_embed'): |
|
new_v = v |
|
if 'proj' in k: |
|
new_k = k.replace('proj', 'projection') |
|
else: |
|
new_k = k |
|
else: |
|
new_v = v |
|
new_k = k |
|
|
|
new_ckpt[new_k] = new_v |
|
|
|
return new_ckpt |
|
|
|
|
|
def main(): |
|
parser = argparse.ArgumentParser( |
|
description='Convert keys in official pretrained swin models to' |
|
'MMSegmentation style.') |
|
parser.add_argument('src', help='src model path or url') |
|
|
|
parser.add_argument('dst', help='save path') |
|
args = parser.parse_args() |
|
|
|
checkpoint = CheckpointLoader.load_checkpoint(args.src, map_location='cpu') |
|
if 'state_dict' in checkpoint: |
|
state_dict = checkpoint['state_dict'] |
|
elif 'model' in checkpoint: |
|
state_dict = checkpoint['model'] |
|
else: |
|
state_dict = checkpoint |
|
weight = convert_swin(state_dict) |
|
mmengine.mkdir_or_exist(osp.dirname(args.dst)) |
|
torch.save(weight, args.dst) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|