|
|
|
import argparse |
|
import os.path as osp |
|
from collections import OrderedDict |
|
|
|
import mmengine |
|
import torch |
|
from mmengine.runner import CheckpointLoader |
|
|
|
|
|
def convert_vit(ckpt): |
|
|
|
new_ckpt = OrderedDict() |
|
|
|
for k, v in ckpt.items(): |
|
if k.startswith('head'): |
|
continue |
|
if k.startswith('norm'): |
|
new_k = k.replace('norm.', 'ln1.') |
|
elif k.startswith('patch_embed'): |
|
if 'proj' in k: |
|
new_k = k.replace('proj', 'projection') |
|
else: |
|
new_k = k |
|
elif k.startswith('blocks'): |
|
if 'norm' in k: |
|
new_k = k.replace('norm', 'ln') |
|
elif 'mlp.fc1' in k: |
|
new_k = k.replace('mlp.fc1', 'ffn.layers.0.0') |
|
elif 'mlp.fc2' in k: |
|
new_k = k.replace('mlp.fc2', 'ffn.layers.1') |
|
elif 'attn.qkv' in k: |
|
new_k = k.replace('attn.qkv.', 'attn.attn.in_proj_') |
|
elif 'attn.proj' in k: |
|
new_k = k.replace('attn.proj', 'attn.attn.out_proj') |
|
else: |
|
new_k = k |
|
new_k = new_k.replace('blocks.', 'layers.') |
|
else: |
|
new_k = k |
|
new_ckpt[new_k] = v |
|
|
|
return new_ckpt |
|
|
|
|
|
def main(): |
|
parser = argparse.ArgumentParser( |
|
description='Convert keys in timm pretrained vit models to ' |
|
'MMSegmentation style.') |
|
parser.add_argument('src', help='src model path or url') |
|
|
|
parser.add_argument('dst', help='save path') |
|
args = parser.parse_args() |
|
|
|
checkpoint = CheckpointLoader.load_checkpoint(args.src, map_location='cpu') |
|
if 'state_dict' in checkpoint: |
|
|
|
state_dict = checkpoint['state_dict'] |
|
elif 'model' in checkpoint: |
|
|
|
state_dict = checkpoint['model'] |
|
else: |
|
state_dict = checkpoint |
|
weight = convert_vit(state_dict) |
|
mmengine.mkdir_or_exist(osp.dirname(args.dst)) |
|
torch.save(weight, args.dst) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|