|
|
|
import base64 |
|
import os |
|
|
|
import cv2 |
|
import mmcv |
|
import torch |
|
from mmengine.model.utils import revert_sync_batchnorm |
|
from ts.torch_handler.base_handler import BaseHandler |
|
|
|
from mmseg.apis import inference_model, init_model |
|
|
|
|
|
class MMsegHandler(BaseHandler): |
|
|
|
def initialize(self, context): |
|
properties = context.system_properties |
|
self.map_location = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
self.device = torch.device(self.map_location + ':' + |
|
str(properties.get('gpu_id')) if torch.cuda. |
|
is_available() else self.map_location) |
|
self.manifest = context.manifest |
|
|
|
model_dir = properties.get('model_dir') |
|
serialized_file = self.manifest['model']['serializedFile'] |
|
checkpoint = os.path.join(model_dir, serialized_file) |
|
self.config_file = os.path.join(model_dir, 'config.py') |
|
|
|
self.model = init_model(self.config_file, checkpoint, self.device) |
|
self.model = revert_sync_batchnorm(self.model) |
|
self.initialized = True |
|
|
|
def preprocess(self, data): |
|
images = [] |
|
|
|
for row in data: |
|
image = row.get('data') or row.get('body') |
|
if isinstance(image, str): |
|
image = base64.b64decode(image) |
|
image = mmcv.imfrombytes(image) |
|
images.append(image) |
|
|
|
return images |
|
|
|
def inference(self, data, *args, **kwargs): |
|
results = [inference_model(self.model, img) for img in data] |
|
return results |
|
|
|
def postprocess(self, data): |
|
output = [] |
|
|
|
for image_result in data: |
|
_, buffer = cv2.imencode('.png', image_result[0].astype('uint8')) |
|
content = buffer.tobytes() |
|
output.append(content) |
|
return output |
|
|