Create code/vis_cloud.py
Browse files
visualization/code/vis_cloud.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from mmseg.apis import MMSegInferencer
|
2 |
+
from glob import glob
|
3 |
+
from vegseg.datasets import L8BIOMEDataset
|
4 |
+
import numpy as np
|
5 |
+
from typing import List
|
6 |
+
import os
|
7 |
+
from PIL import Image
|
8 |
+
from vegseg import models
|
9 |
+
|
10 |
+
def get_palette() -> List[int]:
|
11 |
+
"""
|
12 |
+
get palette of dataset.
|
13 |
+
return:
|
14 |
+
palette: list of palette.
|
15 |
+
"""
|
16 |
+
palette = []
|
17 |
+
palette_list = L8BIOMEDataset.METAINFO["palette"]
|
18 |
+
for palette_item in palette_list:
|
19 |
+
palette.extend(palette_item)
|
20 |
+
return palette
|
21 |
+
|
22 |
+
|
23 |
+
def give_color_to_mask(
|
24 |
+
mask: Image.Image | np.ndarray, palette: List[int]
|
25 |
+
) -> Image.Image:
|
26 |
+
"""
|
27 |
+
give color to mask.
|
28 |
+
return:
|
29 |
+
color_mask: color mask.
|
30 |
+
"""
|
31 |
+
color_mask = Image.fromarray(mask).convert("P")
|
32 |
+
color_mask.putpalette(palette)
|
33 |
+
return color_mask
|
34 |
+
|
35 |
+
|
36 |
+
def main():
|
37 |
+
config_path = "work_dirs/experiment_p_l8/experiment_p_l8.py"
|
38 |
+
weight_path = "work_dirs/experiment_p_l8/best_mIoU_iter_20000.pth"
|
39 |
+
inference = MMSegInferencer(
|
40 |
+
model=config_path,
|
41 |
+
weights=weight_path,
|
42 |
+
device="cuda:1",
|
43 |
+
classes=L8BIOMEDataset.METAINFO["classes"],
|
44 |
+
palette=L8BIOMEDataset.METAINFO["palette"],
|
45 |
+
)
|
46 |
+
images = glob("data/vis/input/*.png")
|
47 |
+
palette = get_palette()
|
48 |
+
predictions = inference.__call__(images,batch_size=16)["predictions"]
|
49 |
+
for image_path, prediction in zip(images, predictions):
|
50 |
+
filename = os.path.basename(image_path)
|
51 |
+
filename = os.path.join("data/vis/ktda",filename)
|
52 |
+
prediction = prediction.astype(np.uint8)
|
53 |
+
color_mask = give_color_to_mask(prediction, palette=palette)
|
54 |
+
color_mask.save(filename)
|
55 |
+
|
56 |
+
if __name__ == "__main__":
|
57 |
+
main()
|