Create vis_model_plus.py
Browse files
visualization/code/vis_model_plus.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from glob import glob
|
2 |
+
import argparse
|
3 |
+
import os
|
4 |
+
from typing import Tuple, List
|
5 |
+
import numpy as np
|
6 |
+
from mmeval import MeanIoU
|
7 |
+
from PIL import Image
|
8 |
+
from matplotlib import pyplot as plt
|
9 |
+
from mmseg.apis import MMSegInferencer
|
10 |
+
from vegseg.datasets import GrassDataset
|
11 |
+
from vegseg import models
|
12 |
+
|
13 |
+
|
14 |
+
def get_iou(pred: np.ndarray, gt: np.ndarray, num_classes=2):
|
15 |
+
pred = pred[np.newaxis]
|
16 |
+
gt = gt[np.newaxis]
|
17 |
+
miou = MeanIoU(num_classes=num_classes)
|
18 |
+
result = miou(pred, gt)
|
19 |
+
return result["mIoU"] * 100
|
20 |
+
|
21 |
+
|
22 |
+
def get_args() -> Tuple[str, str, int]:
|
23 |
+
"""
|
24 |
+
get args
|
25 |
+
return:
|
26 |
+
--device: device to use.
|
27 |
+
--dataset_path: dataset path.
|
28 |
+
--output_path: output path for saving.
|
29 |
+
"""
|
30 |
+
parser = argparse.ArgumentParser()
|
31 |
+
parser.add_argument("--device", type=str, default="cuda:4")
|
32 |
+
parser.add_argument("--dataset_path", type=str, default="data/grass")
|
33 |
+
args = parser.parse_args()
|
34 |
+
return args.device, args.dataset_path
|
35 |
+
|
36 |
+
|
37 |
+
def give_color_to_mask(
|
38 |
+
mask: Image.Image | np.ndarray, palette: List[int]
|
39 |
+
) -> Image.Image:
|
40 |
+
"""
|
41 |
+
Args:
|
42 |
+
mask: mask to color, numpy array or PIL Image.
|
43 |
+
palette: palette of dataset.
|
44 |
+
return:
|
45 |
+
mask: mask with color.
|
46 |
+
"""
|
47 |
+
if isinstance(mask, np.ndarray):
|
48 |
+
mask = Image.fromarray(mask)
|
49 |
+
mask = mask.convert("P")
|
50 |
+
mask.putpalette(palette)
|
51 |
+
return mask
|
52 |
+
|
53 |
+
|
54 |
+
def get_image_and_mask_paths(
|
55 |
+
dataset_path: str, num: int
|
56 |
+
) -> Tuple[List[str], List[str]]:
|
57 |
+
"""
|
58 |
+
get image and mask paths from dataset path.
|
59 |
+
return:
|
60 |
+
image_paths: list of image paths.
|
61 |
+
mask_paths: list of mask paths.
|
62 |
+
"""
|
63 |
+
image_paths = glob(os.path.join(dataset_path, "img_dir", "*", "*.tif"))
|
64 |
+
if num != -1:
|
65 |
+
image_paths = image_paths[:num]
|
66 |
+
mask_paths = [
|
67 |
+
filename.replace("tif", "png").replace("img_dir", "ann_dir")
|
68 |
+
for filename in image_paths
|
69 |
+
]
|
70 |
+
return image_paths, mask_paths
|
71 |
+
|
72 |
+
|
73 |
+
def get_palette() -> List[int]:
|
74 |
+
"""
|
75 |
+
get palette of dataset.
|
76 |
+
return:
|
77 |
+
palette: list of palette.
|
78 |
+
"""
|
79 |
+
palette = []
|
80 |
+
palette_list = GrassDataset.METAINFO["palette"]
|
81 |
+
for palette_item in palette_list:
|
82 |
+
palette.extend(palette_item)
|
83 |
+
return palette
|
84 |
+
|
85 |
+
|
86 |
+
def init_all_models(models_paths: List[str], device: str):
|
87 |
+
"""
|
88 |
+
init all models
|
89 |
+
Args:
|
90 |
+
models_path (str): path to all models.
|
91 |
+
device (str): device to use.
|
92 |
+
Return:
|
93 |
+
models (dict): dict of models.
|
94 |
+
"""
|
95 |
+
models = {}
|
96 |
+
for model_path in models_paths:
|
97 |
+
print(model_path)
|
98 |
+
config_path = glob(os.path.join(model_path, "*.py"))[0]
|
99 |
+
weight_path = glob(os.path.join(model_path, "best_mIoU_iter_*.pth"))[0]
|
100 |
+
inference = MMSegInferencer(
|
101 |
+
config_path,
|
102 |
+
weight_path,
|
103 |
+
device=device,
|
104 |
+
classes=GrassDataset.METAINFO["classes"],
|
105 |
+
palette=GrassDataset.METAINFO["palette"],
|
106 |
+
)
|
107 |
+
model_name = model_path.split(os.path.sep)[-1]
|
108 |
+
models[model_name] = inference
|
109 |
+
return models
|
110 |
+
|
111 |
+
|
112 |
+
def main():
|
113 |
+
device, dataset_path = get_args()
|
114 |
+
image_paths, mask_paths = get_image_and_mask_paths(dataset_path, -1)
|
115 |
+
palette = get_palette()
|
116 |
+
models_paths = [
|
117 |
+
r"work_dirs/fcn_r50",
|
118 |
+
r"work_dirs/pspnet_r101",
|
119 |
+
r"work_dirs/deeplabv3plus_r101",
|
120 |
+
r"work_dirs/unet-s5-d16_deeplabv3",
|
121 |
+
r"work_dirs/segformer_mit-b5",
|
122 |
+
r"work_dirs/mask2former_swin_b",
|
123 |
+
r"work_dirs/dinov2_upernet",
|
124 |
+
r"work_dirs/experiment_p",
|
125 |
+
]
|
126 |
+
models = init_all_models(models_paths, device)
|
127 |
+
|
128 |
+
model_order = [
|
129 |
+
"experiment_p",
|
130 |
+
"fcn_r50",
|
131 |
+
"pspnet_r101",
|
132 |
+
"deeplabv3plus_r101",
|
133 |
+
"unet-s5-d16_deeplabv3",
|
134 |
+
"segformer_mit-b5",
|
135 |
+
"mask2former_swin_b",
|
136 |
+
"dinov2_upernet"
|
137 |
+
]
|
138 |
+
|
139 |
+
os.makedirs("vis_results", exist_ok=True)
|
140 |
+
for image_path, mask_path in zip(image_paths, mask_paths):
|
141 |
+
result_eval = {}
|
142 |
+
result_iou = {}
|
143 |
+
mask = Image.open(mask_path)
|
144 |
+
for model_name, inference in models.items():
|
145 |
+
predictions: np.ndarray = inference(image_path)["predictions"]
|
146 |
+
predictions = predictions.astype(np.uint8)
|
147 |
+
result_eval[model_name] = predictions
|
148 |
+
result_iou[model_name] = get_iou(predictions, np.array(mask), num_classes=5)
|
149 |
+
|
150 |
+
# 鏍规嵁iou 杩涜鎺掑簭
|
151 |
+
result_iou_sorted = sorted(result_iou.items(), key=lambda x: x[1], reverse=True)
|
152 |
+
|
153 |
+
if result_iou_sorted[0][0] != "experiment_p":
|
154 |
+
continue
|
155 |
+
|
156 |
+
plt.figure(figsize=(32, 8))
|
157 |
+
plt.subplots_adjust(wspace=0.01)
|
158 |
+
plt.subplot(1, 10, 1)
|
159 |
+
plt.imshow(Image.open(image_path))
|
160 |
+
plt.axis("off")
|
161 |
+
|
162 |
+
plt.subplot(1, 10, 2)
|
163 |
+
plt.imshow(give_color_to_mask(mask, palette=palette))
|
164 |
+
plt.axis("off")
|
165 |
+
|
166 |
+
for i, model_name in enumerate(model_order):
|
167 |
+
plt.subplot(1, 10, i + 3)
|
168 |
+
plt.imshow(give_color_to_mask(result_eval[model_name], palette))
|
169 |
+
plt.axis("off")
|
170 |
+
|
171 |
+
base_name = os.path.basename(image_path).split(".")[0]
|
172 |
+
diff_iou = result_iou_sorted[0][1] - result_iou_sorted[1][1]
|
173 |
+
plt.savefig(
|
174 |
+
f"vis_results/{diff_iou:.2f}_{base_name}.svg",
|
175 |
+
dpi=300,
|
176 |
+
bbox_inches="tight",
|
177 |
+
pad_inches=0,
|
178 |
+
)
|
179 |
+
|
180 |
+
|
181 |
+
if __name__ == "__main__":
|
182 |
+
# example usage: python tools/vis_model.py --models work_dirs --device cuda:0 --dataset_path data/grass
|
183 |
+
main()
|