XavierSpycy commited on
Commit
916093b
1 Parent(s): e02e8a8

Update model card

Browse files
README.md CHANGED
@@ -2,7 +2,7 @@
2
  license: apache-2.0
3
  ---
4
 
5
- # Meta-Llama-3-8B-Instruct-zh-10k
6
 
7
  ## Model Details / 模型细节
8
  This model, <u>`Meta-Llama-3-8B-Instruct-zh-10k`</u>, was fine-tuned from the original [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) due to its underperformance in Chinese. Utilizing the LoRa technology within the [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory) utilities, this model was adapted to better handle Chinese through three epochs on three corpora: `alpaca_zh`, `alpaca_gpt4_zh`, and `oaast_sft_zh`, amounting to approximately 10,000 examples. This is reflected in the `10k` in its name.
@@ -23,12 +23,22 @@ Additional fine-tuning configurations are avaiable at [Hands-On LoRa](https://gi
23
 
24
  更多微调配置可以在我的个人仓库 [Hands-On LoRa](https://github.com/XavierSpycy/hands-on-lora) 或 [Llama3Ops](https://github.com/XavierSpycy/llama-ops) 获得。
25
 
 
 
 
 
 
 
 
 
 
 
26
  ### Model Developer / 模型开发者
27
  - **Pretraining**: Meta
28
- - **Fine-tuning**: [XavierSpycy @ <img src="https://img.shields.io/badge/-white?logo="> ](https://github.com/XavierSpycy) | [XavierSpycy @ 🤗](https://huggingface.co/XavierSpycy)
29
 
30
  - **预训练**: Meta
31
- - **微调**: [XavierSpycy @ <img src="https://img.shields.io/badge/-white?logo="> ](https://github.com/XavierSpycy) | [XavierSpycy @ 🤗 ](https://huggingface.co/XavierSpycy)
32
 
33
 
34
  ### Usage / 用法
@@ -37,6 +47,9 @@ This model can be utilized like the original <u>Meta-Llama3</u> but offers enhan
37
  我们能够像原版的<u>Meta-Llama3</u>一样使用该模型,而它提供了提升后的中文能力。
38
 
39
  ```python
 
 
 
40
  from transformers import AutoTokenizer, AutoModelForCausalLM
41
 
42
  model_id = "XavierSpycy/Meta-Llama-3-8B-Instruct-zh-10k"
@@ -66,7 +79,8 @@ outputs = model.generate(
66
  response = outputs[0][input_ids.shape[-1]:]
67
 
68
  print(tokenizer.decode(response, skip_special_tokens=True))
69
- # 我是一个人工智能助手,旨在帮助用户解决问题和完成任务。我是一个虚拟的人工智能助手,能够通过自然语言处理技术理解用户的需求并为用户提供帮助。
 
70
  ```
71
 
72
  Further details about the deployment are available in the GitHub repository [Llama3Ops: From LoRa to Deployment with Llama3](https://github.com/XavierSpycy/llama-ops).
 
2
  license: apache-2.0
3
  ---
4
 
5
+ # Meta-Llama-3-8B-Instruct-zh-10k: A Llama🦙 which speaks Chinese / 一只说中文的羊驼🦙
6
 
7
  ## Model Details / 模型细节
8
  This model, <u>`Meta-Llama-3-8B-Instruct-zh-10k`</u>, was fine-tuned from the original [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) due to its underperformance in Chinese. Utilizing the LoRa technology within the [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory) utilities, this model was adapted to better handle Chinese through three epochs on three corpora: `alpaca_zh`, `alpaca_gpt4_zh`, and `oaast_sft_zh`, amounting to approximately 10,000 examples. This is reflected in the `10k` in its name.
 
23
 
24
  更多微调配置可以在我的个人仓库 [Hands-On LoRa](https://github.com/XavierSpycy/hands-on-lora) 或 [Llama3Ops](https://github.com/XavierSpycy/llama-ops) 获得。
25
 
26
+ ### Other Models / 其他模型
27
+ - <u>llama.cpp</u>
28
+ - [Meta-Llama-3-8B-Instruct-zh-10k-GGUF](https://huggingface.co/XavierSpycy/Meta-Llama-3-8B-Instruct-zh-10k-GGUF)
29
+
30
+ - <u>AutoAWQ</u>
31
+ - [Meta-Llama-3-8B-Instruct-zh-10k-AWQ](https://huggingface.co/XavierSpycy/Meta-Llama-3-8B-Instruct-zh-10k-AWQ)
32
+
33
+ - <u>AutoGPTQ</u>
34
+ - [Meta-Llama-3-8B-Instruct-zh-10k-GPTQ](https://huggingface.co/XavierSpycy/Meta-Llama-3-8B-Instruct-zh-10k-GPTQ)
35
+
36
  ### Model Developer / 模型开发者
37
  - **Pretraining**: Meta
38
+ - **Fine-tuning**: [XavierSpycy @ GitHub ](https://github.com/XavierSpycy) | [XavierSpycy @ 🤗](https://huggingface.co/XavierSpycy)
39
 
40
  - **预训练**: Meta
41
+ - **微调**: [XavierSpycy @ GitHub](https://github.com/XavierSpycy) | [XavierSpycy @ 🤗 ](https://huggingface.co/XavierSpycy)
42
 
43
 
44
  ### Usage / 用法
 
47
  我们能够像原版的<u>Meta-Llama3</u>一样使用该模型,而它提供了提升后的中文能力。
48
 
49
  ```python
50
+ # !pip install accelerate
51
+
52
+ import torch
53
  from transformers import AutoTokenizer, AutoModelForCausalLM
54
 
55
  model_id = "XavierSpycy/Meta-Llama-3-8B-Instruct-zh-10k"
 
79
  response = outputs[0][input_ids.shape[-1]:]
80
 
81
  print(tokenizer.decode(response, skip_special_tokens=True))
82
+ # 我是一个人工智能助手,旨在帮助用户解决问题和完成任务。
83
+ # 我是一个虚拟的人工智能助手,能够通过自然语言处理技术理解用户的需求并为用户提供帮助。
84
  ```
85
 
86
  Further details about the deployment are available in the GitHub repository [Llama3Ops: From LoRa to Deployment with Llama3](https://github.com/XavierSpycy/llama-ops).
meta-llama-3-8b-instruct-zh-10k.Q2_K.gguf DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:5634aeaeff78e940e10671bec07e99d1acb15c8f230388df3972e44fa3f7015e
3
- size 3179131456
 
 
 
 
meta-llama-3-8b-instruct-zh-10k.Q8_0.gguf DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:e675330f4b8e5916823427938b23a18f810183c7f1eb5188430efa104554c04e
3
- size 8540770880
 
 
 
 
meta-llama-3-8b-instruct-zh-10k.gguf DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:d317b766a878d9c2ed765a412dc043f543f49a9795bd47ab47e7f18fa53b64ac
3
- size 16068891200