File size: 5,392 Bytes
c6d0362 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
import os
import json
from argparse import ArgumentParser
from typing import List
import torch
import torch.distributed as dist
from transformers import AutoTokenizer
from safetensors.torch import load_model
from model import Transformer, ModelArgs
def sample(logits, temperature: float = 1.0):
logits = logits / max(temperature, 1e-5)
probs = torch.softmax(logits, dim=-1)
return probs.div_(torch.empty_like(probs).exponential_(1)).argmax(dim=-1)
@torch.inference_mode()
def generate(
model: Transformer,
prompt_tokens: List[List[int]],
max_new_tokens: int,
eos_id: int,
temperature: float = 1.0
) -> List[List[int]]:
prompt_lens = [len(t) for t in prompt_tokens]
assert max(prompt_lens) <= model.max_seq_len
total_len = min(model.max_seq_len, max_new_tokens + max(prompt_lens))
tokens = torch.full((len(prompt_tokens), total_len), -1, dtype=torch.long, device="cuda")
for i, t in enumerate(prompt_tokens):
tokens[i, :len(t)] = torch.tensor(t, dtype=torch.long, device="cuda")
prev_pos = 0
finished = torch.tensor([False] * len(prompt_tokens), device="cuda")
prompt_mask = tokens != -1
for cur_pos in range(min(prompt_lens), total_len):
logits = model.forward(tokens[:, prev_pos:cur_pos], prev_pos)
if temperature > 0:
next_token = sample(logits, temperature)
else:
next_token = logits.argmax(dim=-1)
next_token = torch.where(prompt_mask[:, cur_pos], tokens[:, cur_pos], next_token)
tokens[:, cur_pos] = next_token
finished |= torch.logical_and(~prompt_mask[:, cur_pos], next_token == eos_id)
prev_pos = cur_pos
if finished.all():
break
completion_tokens = []
for i, toks in enumerate(tokens.tolist()):
toks = toks[prompt_lens[i]:prompt_lens[i]+max_new_tokens]
if eos_id in toks:
toks = toks[:toks.index(eos_id)]
completion_tokens.append(toks)
return completion_tokens
def main(
ckpt_path: str,
config: str,
input_file: str = "",
interactive: bool = True,
max_new_tokens: int = 100,
temperature: float = 1.0,
) -> None:
world_size = int(os.getenv("WORLD_SIZE", "1"))
rank = int(os.getenv("RANK", "0"))
local_rank = int(os.getenv("LOCAL_RANK", "0"))
if world_size > 1:
dist.init_process_group("nccl")
global print
if rank != 0:
print = lambda *_, **__: None
torch.cuda.set_device(local_rank)
torch.set_default_dtype(torch.bfloat16)
torch.set_num_threads(8)
torch.manual_seed(965)
with open(config) as f:
args = ModelArgs(**json.load(f))
print(args)
with torch.device("cuda"):
model = Transformer(args)
tokenizer = AutoTokenizer.from_pretrained(ckpt_path)
tokenizer.decode(generate(model, [tokenizer.encode("DeepSeek")], 2, -1, 1.)[0])
load_model(model, os.path.join(ckpt_path, f"model{rank}-mp{world_size}.safetensors"))
if interactive:
messages = []
while True:
if world_size == 1:
prompt = input(">>> ")
elif rank == 0:
prompt = input(">>> ")
objects = [prompt]
dist.broadcast_object_list(objects, 0)
else:
objects = [None]
dist.broadcast_object_list(objects, 0)
prompt = objects[0]
if prompt == "/exit":
break
elif prompt == "/clear":
messages.clear()
continue
messages.append({"role": "user", "content": prompt})
prompt_tokens = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
completion_tokens = generate(model, [prompt_tokens], max_new_tokens, tokenizer.eos_token_id, temperature)
completion = tokenizer.decode(completion_tokens[0], skip_special_tokens=True)
print(completion)
messages.append({"role": "assistant", "content": completion})
else:
with open(input_file) as f:
prompts = [line.strip() for line in f.readlines()]
assert len(prompts) <= args.max_batch_size
prompt_tokens = [tokenizer.apply_chat_template([{"role": "user", "content": prompt}], add_generation_prompt=True) for prompt in prompts]
completion_tokens = generate(model, prompt_tokens, max_new_tokens, tokenizer.eos_token_id, temperature)
completions = tokenizer.batch_decode(completion_tokens, skip_special_tokens=True)
for prompt, completion in zip(prompts, completions):
print("Prompt:", prompt)
print("Completion:", completion)
print()
if world_size > 1:
dist.destroy_process_group()
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--ckpt-path", type=str, required=True)
parser.add_argument("--config", type=str, required=True)
parser.add_argument("--input-file", type=str, default="")
parser.add_argument("--interactive", action="store_true")
parser.add_argument("--max-new-tokens", type=int, default=200)
parser.add_argument("--temperature", type=float, default=0.2)
args = parser.parse_args()
assert args.input_file or args.interactive
main(args.ckpt_path, args.config, args.input_file, args.interactive, args.max_new_tokens, args.temperature)
|