File size: 1,748 Bytes
585b312 5f8986e 585b312 3f2acba 6fa4bf6 3f2acba 6fa4bf6 3f2acba fc5e662 3f2acba 6fa4bf6 3f2acba 585b312 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
---
base_model: sentence-transformers/all-MiniLM-L6-v2
library_name: transformers.js
---
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2 with ONNX weights to be compatible with Transformers.js.
## Usage (Transformers.js)
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
```bash
npm i @huggingface/transformers
```
You can then use the model to compute embeddings like this:
```js
import { pipeline } from '@huggingface/transformers';
// Create a feature-extraction pipeline
const extractor = await pipeline('feature-extraction', 'Xenova/all-MiniLM-L6-v2');
// Compute sentence embeddings
const sentences = ['This is an example sentence', 'Each sentence is converted'];
const output = await extractor(sentences, { pooling: 'mean', normalize: true });
console.log(output);
// Tensor {
// dims: [ 2, 384 ],
// type: 'float32',
// data: Float32Array(768) [ 0.04592696577310562, 0.07328180968761444, ... ],
// size: 768
// }
```
You can convert this Tensor to a nested JavaScript array using `.tolist()`:
```js
console.log(output.tolist());
// [
// [ 0.04592696577310562, 0.07328180968761444, 0.05400655046105385, ... ],
// [ 0.08188057690858841, 0.10760223120450974, -0.013241755776107311, ... ]
// ]
```
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`). |