Update README.md
Browse files
README.md
CHANGED
@@ -6,4 +6,70 @@ tags:
|
|
6 |
|
7 |
https://huggingface.co/laion/clap-htsat-unfused with ONNX weights to be compatible with Transformers.js.
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
|
|
|
6 |
|
7 |
https://huggingface.co/laion/clap-htsat-unfused with ONNX weights to be compatible with Transformers.js.
|
8 |
|
9 |
+
## Usage (Transformers.js)
|
10 |
+
|
11 |
+
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
|
12 |
+
```bash
|
13 |
+
npm i @xenova/transformers
|
14 |
+
```
|
15 |
+
|
16 |
+
**Example:** Perform zero-shot audio classification with `Xenova/clap-htsat-unfused`.
|
17 |
+
```js
|
18 |
+
let classifier = await pipeline('zero-shot-audio-classification', 'Xenova/clap-htsat-unfused');
|
19 |
+
let audio = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/dog_barking.wav';
|
20 |
+
let candidate_labels = ['dog', 'vaccum cleaner'];
|
21 |
+
let scores = await classifier(audio, candidate_labels);
|
22 |
+
// [
|
23 |
+
// { score: 0.9993992447853088, label: 'dog' },
|
24 |
+
// { score: 0.0006007603369653225, label: 'vaccum cleaner' }
|
25 |
+
// ]
|
26 |
+
```
|
27 |
+
|
28 |
+
**Example:** Compute text embeddings with `ClapTextModelWithProjection`.
|
29 |
+
|
30 |
+
```js
|
31 |
+
import { AutoTokenizer, ClapTextModelWithProjection } from '@xenova/transformers';
|
32 |
+
|
33 |
+
// Load tokenizer and text model
|
34 |
+
const tokenizer = await AutoTokenizer.from_pretrained('Xenova/clap-htsat-unfused');
|
35 |
+
const text_model = await ClapTextModelWithProjection.from_pretrained('Xenova/clap-htsat-unfused');
|
36 |
+
|
37 |
+
// Run tokenization
|
38 |
+
const texts = ['a sound of a cat', 'a sound of a dog'];
|
39 |
+
const text_inputs = tokenizer(texts, { padding: true, truncation: true });
|
40 |
+
|
41 |
+
// Compute embeddings
|
42 |
+
const { text_embeds } = await text_model(text_inputs);
|
43 |
+
// Tensor {
|
44 |
+
// dims: [ 2, 512 ],
|
45 |
+
// type: 'float32',
|
46 |
+
// data: Float32Array(1024) [ ... ],
|
47 |
+
// size: 1024
|
48 |
+
// }
|
49 |
+
```
|
50 |
+
|
51 |
+
**Example:** Compute audio embeddings with `ClapAudioModelWithProjection`.
|
52 |
+
```js
|
53 |
+
import { AutoProcessor, ClapAudioModelWithProjection, read_audio } from '@xenova/transformers';
|
54 |
+
|
55 |
+
// Load processor and audio model
|
56 |
+
const processor = await AutoProcessor.from_pretrained('Xenova/clap-htsat-unfused');
|
57 |
+
const audio_model = await ClapAudioModelWithProjection.from_pretrained('Xenova/clap-htsat-unfused');
|
58 |
+
|
59 |
+
// Read audio and run processor
|
60 |
+
const audio = await read_audio('https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/cat_meow.wav');
|
61 |
+
const audio_inputs = await processor(audio);
|
62 |
+
|
63 |
+
// Compute embeddings
|
64 |
+
const { audio_embeds } = await audio_model(audio_inputs);
|
65 |
+
// Tensor {
|
66 |
+
// dims: [ 1, 512 ],
|
67 |
+
// type: 'float32',
|
68 |
+
// data: Float32Array(512) [ ... ],
|
69 |
+
// size: 512
|
70 |
+
// }
|
71 |
+
```
|
72 |
+
|
73 |
+
---
|
74 |
+
|
75 |
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
|