File size: 1,404 Bytes
8cfaa54 756b78a 8cfaa54 ed5c645 4c1807b ed5c645 4c1807b ed5c645 4c1807b ed5c645 8cfaa54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
---
base_model: openai/clip-vit-base-patch32
library_name: transformers.js
---
https://huggingface.co/openai/clip-vit-base-patch32 with ONNX weights to be compatible with Transformers.js.
## Usage (Transformers.js)
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
```bash
npm i @huggingface/transformers
```
**Example:** Perform zero-shot image classification with the `pipeline` API.
```js
import { pipeline } from '@huggingface/transformers';
const classifier = await pipeline('zero-shot-image-classification', 'Xenova/clip-vit-base-patch32');
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/tiger.jpg';
const output = await classifier(url, ['tiger', 'horse', 'dog']);
// [
// { score: 0.9993917942047119, label: 'tiger' },
// { score: 0.0003519294841680676, label: 'horse' },
// { score: 0.0002562698791734874, label: 'dog' }
// ]
```
---
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`). |