File size: 1,709 Bytes
bc4f330 e27503e bc4f330 abd5c1d e27503e bc4f330 b6705f5 abd5c1d b6705f5 abd5c1d b6705f5 abd5c1d b6705f5 abd5c1d bc4f330 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
---
base_model: timm/fastvit_t12.apple_dist_in1k
library_name: transformers.js
license: other
pipeline_tag: image-classification
---
https://huggingface.co/timm/fastvit_t12.apple_dist_in1k with ONNX weights to be compatible with Transformers.js.
## Usage (Transformers.js)
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
```bash
npm i @xenova/transformers
```
**Example:** Perform image classification with `Xenova/fastvit_t12.apple_dist_in1k`.
```js
import { pipeline } from '@xenova/transformers';
// Create an image classification pipeline
const classifier = await pipeline('image-classification', 'Xenova/fastvit_t12.apple_dist_in1k', {
quantized: false
});
// Classify an image
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/tiger.jpg';
const output = await classifier(url, { topk: 5 });
console.log(output);
// [
// { label: 'tiger, Panthera tigris', score: 0.7830049991607666 },
// { label: 'tiger cat', score: 0.08560094237327576 },
// { label: 'lynx, catamount', score: 0.0005580639117397368 },
// { label: 'Bernese mountain dog', score: 0.0005574578535743058 },
// { label: 'Appenzeller', score: 0.0005380114307627082 }
// ]
```
---
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`). |