--- base_model: timm/fastvit_t12.apple_dist_in1k library_name: transformers.js license: other pipeline_tag: image-classification --- https://huggingface.co/timm/fastvit_t12.apple_dist_in1k with ONNX weights to be compatible with Transformers.js. ## Usage (Transformers.js) If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using: ```bash npm i @xenova/transformers ``` **Example:** Perform image classification with `Xenova/fastvit_t12.apple_dist_in1k`. ```js import { pipeline } from '@xenova/transformers'; // Create an image classification pipeline const classifier = await pipeline('image-classification', 'Xenova/fastvit_t12.apple_dist_in1k', { quantized: false }); // Classify an image const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/tiger.jpg'; const output = await classifier(url, { topk: 5 }); console.log(output); // [ // { label: 'tiger, Panthera tigris', score: 0.7830049991607666 }, // { label: 'tiger cat', score: 0.08560094237327576 }, // { label: 'lynx, catamount', score: 0.0005580639117397368 }, // { label: 'Bernese mountain dog', score: 0.0005574578535743058 }, // { label: 'Appenzeller', score: 0.0005380114307627082 } // ] ``` --- Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).