Xenova HF staff commited on
Commit
6d40b95
·
1 Parent(s): 0d713cc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +32 -0
README.md CHANGED
@@ -4,4 +4,36 @@ library_name: transformers.js
4
 
5
  https://huggingface.co/facebook/hubert-base-ls960 with ONNX weights to be compatible with Transformers.js.
6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
 
4
 
5
  https://huggingface.co/facebook/hubert-base-ls960 with ONNX weights to be compatible with Transformers.js.
6
 
7
+ https://huggingface.co/laion/larger_clap_music_and_speech with ONNX weights to be compatible with Transformers.js.
8
+
9
+ ## Usage (Transformers.js)
10
+
11
+ If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
12
+ ```bash
13
+ npm i @xenova/transformers
14
+ ```
15
+
16
+ **Example:** Load and run a `HubertModel` for feature extraction.
17
+ ```javascript
18
+ import { AutoProcessor, AutoModel, read_audio } from '@xenova/transformers';
19
+
20
+ // Read and preprocess audio
21
+ const processor = await AutoProcessor.from_pretrained('Xenova/hubert-base-ls960');
22
+ const audio = await read_audio('https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/jfk.wav', 16000);
23
+ const inputs = await processor(audio);
24
+
25
+ // Load and run model with inputs
26
+ const model = await AutoModel.from_pretrained('Xenova/hubert-base-ls960');
27
+ const output = await model(inputs);
28
+ // {
29
+ // last_hidden_state: Tensor {
30
+ // dims: [ 1, 549, 768 ],
31
+ // type: 'float32',
32
+ // data: Float32Array(421632) [0.0682469978928566, 0.08104046434164047, -0.4975186586380005, ...],
33
+ // size: 421632
34
+ // }
35
+ // }
36
+ ```
37
+ ---
38
+
39
  Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).