--- base_model: microsoft/speecht5_tts library_name: transformers.js pipeline_tag: text-to-speech --- https://huggingface.co/microsoft/speecht5_tts with ONNX weights to be compatible with Transformers.js. ## Usage (Transformers.js) If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using: ```bash npm i @huggingface/transformers ``` **Example:** Text-to-speech pipeline. ```js import { pipeline } from '@huggingface/transformers'; // Create a text-to-speech pipeline const synthesizer = await pipeline('text-to-speech', 'Xenova/speecht5_tts', { dtype: 'fp32' }); // Generate speech const speaker_embeddings = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/speaker_embeddings.bin'; const result = await synthesizer('Hello, my dog is cute', { speaker_embeddings }); console.log(result); // { // audio: Float32Array(26112) [-0.00005657337896991521, 0.00020583874720614403, ...], // sampling_rate: 16000 // } ``` Optionally, save the audio to a wav file (Node.js): ```js import wavefile from 'wavefile'; import fs from 'fs'; const wav = new wavefile.WaveFile(); wav.fromScratch(1, result.sampling_rate, '32f', result.audio); fs.writeFileSync('result.wav', wav.toBuffer()); ``` **Example:** Load processor, tokenizer, and models separately. ```js import { AutoTokenizer, AutoProcessor, SpeechT5ForTextToSpeech, SpeechT5HifiGan, Tensor } from '@huggingface/transformers'; // Load the tokenizer and processor const tokenizer = await AutoTokenizer.from_pretrained('Xenova/speecht5_tts'); const processor = await AutoProcessor.from_pretrained('Xenova/speecht5_tts'); // Load the models // NOTE: We use the unquantized versions as they are more accurate const model = await SpeechT5ForTextToSpeech.from_pretrained('Xenova/speecht5_tts', { dtype: 'fp32' }); const vocoder = await SpeechT5HifiGan.from_pretrained('Xenova/speecht5_hifigan', { dtype: 'fp32' }); // Load speaker embeddings from URL const speaker_embeddings_data = new Float32Array( await (await fetch('https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/speaker_embeddings.bin')).arrayBuffer() ); const speaker_embeddings = new Tensor( 'float32', speaker_embeddings_data, [1, speaker_embeddings_data.length] ) // Run tokenization const { input_ids } = tokenizer('Hello, my dog is cute'); // Generate waveform const { waveform } = await model.generate_speech(input_ids, speaker_embeddings, { vocoder }); console.log(waveform) // Tensor { // dims: [ 26112 ], // type: 'float32', // size: 26112, // data: Float32Array(26112) [ -0.00043630177970044315, -0.00018082228780258447, ... ], // } ``` Optionally, save the audio to a wav file (Node.js): ```js // Write to file (Node.js) import wavefile from 'wavefile'; import fs from 'fs'; const wav = new wavefile.WaveFile(); wav.fromScratch(1, processor.feature_extractor.config.sampling_rate, '32f', waveform.data); fs.writeFileSync('out.wav', wav.toBuffer()); ``` --- Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).