Joshua Lochner commited on
Commit
4b426c4
·
1 Parent(s): bd6fd75

Update pipeline.py

Browse files
Files changed (1) hide show
  1. pipeline.py +73 -7
pipeline.py CHANGED
@@ -8,9 +8,16 @@ from transformers import (
8
  TextClassificationPipeline,
9
  )
10
  from typing import Any, Dict, List
 
 
11
 
 
 
 
 
 
 
12
  from PIL import Image
13
-
14
  CATEGORIES = [None, 'SPONSOR', 'SELFPROMO', 'INTERACTION']
15
 
16
  PROFANITY_RAW = '[ __ ]' # How YouTube transcribes profanity
@@ -312,15 +319,74 @@ class PreTrainedPipeline():
312
  self.pipeline = SponsorBlockClassificationPipeline(
313
  model=self.model, tokenizer=self.tokenizer)
314
 
315
- def __call__(self, inputs: str) -> List[Dict[str, Any]]:
316
- json_data = json.loads(inputs)
317
- return self.pipeline(json_data)
318
-
319
  def __call__(self, inputs: "Image.Image")-> List[Dict[str, Any]]:
320
- json_data = [{
321
  'video_id': 'pqh4LfPeCYs',
322
  'start': 835.933,
323
  'end': 927.581,
324
  'category': 'sponsor'
325
  }]
326
- return self.pipeline(json_data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  TextClassificationPipeline,
9
  )
10
  from typing import Any, Dict, List
11
+ import json
12
+ from typing import Any, Dict, List
13
 
14
+ import tensorflow as tf
15
+ from tensorflow import keras
16
+ import base64
17
+ import io
18
+ import os
19
+ import numpy as np
20
  from PIL import Image
 
21
  CATEGORIES = [None, 'SPONSOR', 'SELFPROMO', 'INTERACTION']
22
 
23
  PROFANITY_RAW = '[ __ ]' # How YouTube transcribes profanity
 
319
  self.pipeline = SponsorBlockClassificationPipeline(
320
  model=self.model, tokenizer=self.tokenizer)
321
 
322
+ # def __call__(self, inputs: str) -> List[Dict[str, Any]]:
323
+ # json_data = json.loads(inputs)
324
+ # return self.pipeline(json_data)
 
325
  def __call__(self, inputs: "Image.Image")-> List[Dict[str, Any]]:
326
+ data = [{
327
  'video_id': 'pqh4LfPeCYs',
328
  'start': 835.933,
329
  'end': 927.581,
330
  'category': 'sponsor'
331
  }]
332
+ results = self.pipeline(data)
333
+
334
+ # convert img to numpy array, resize and normalize to make the prediction
335
+ img = np.array(inputs)
336
+
337
+ im = tf.image.resize(img, (128, 128))
338
+ im = tf.cast(im, tf.float32) / 255.0
339
+ pred_mask = self.model.predict(im[tf.newaxis, ...])
340
+
341
+ # take the best performing class for each pixel
342
+ # the output of argmax looks like this [[1, 2, 0], ...]
343
+ pred_mask_arg = tf.argmax(pred_mask, axis=-1)
344
+
345
+ labels = []
346
+
347
+ # convert the prediction mask into binary masks for each class
348
+ binary_masks = {}
349
+ mask_codes = {}
350
+
351
+ # when we take tf.argmax() over pred_mask, it becomes a tensor object
352
+ # the shape becomes TensorShape object, looking like this TensorShape([128])
353
+ # we need to take get shape, convert to list and take the best one
354
+
355
+ rows = pred_mask_arg[0][1].get_shape().as_list()[0]
356
+ cols = pred_mask_arg[0][2].get_shape().as_list()[0]
357
+
358
+ for cls in range(pred_mask.shape[-1]):
359
+
360
+ binary_masks[f"mask_{cls}"] = np.zeros(shape = (pred_mask.shape[1], pred_mask.shape[2])) #create masks for each class
361
+
362
+ for row in range(rows):
363
+
364
+ for col in range(cols):
365
+
366
+ if pred_mask_arg[0][row][col] == cls:
367
+
368
+ binary_masks[f"mask_{cls}"][row][col] = 1
369
+ else:
370
+ binary_masks[f"mask_{cls}"][row][col] = 0
371
+
372
+ mask = binary_masks[f"mask_{cls}"]
373
+ mask *= 255
374
+ img = Image.fromarray(mask.astype(np.int8), mode="L")
375
+
376
+ # we need to make it readable for the widget
377
+ with io.BytesIO() as out:
378
+ img.save(out, format="PNG")
379
+ png_string = out.getvalue()
380
+ mask = base64.b64encode(png_string).decode("utf-8")
381
+
382
+ mask_codes[f"mask_{cls}"] = mask
383
+
384
+
385
+ # widget needs the below format, for each class we return label and mask string
386
+ labels.append({
387
+ "label": f"LABEL_{cls}",
388
+ "mask": mask_codes[f"mask_{cls}"],
389
+ "score": 1.0,
390
+ "q": results
391
+ })
392
+ return labels