--- base_model: caidas/swin2SR-lightweight-x2-64 library_name: transformers.js --- https://huggingface.co/caidas/swin2SR-lightweight-x2-64 with ONNX weights to be compatible with Transformers.js. ## Usage (Transformers.js) If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using: ```bash npm i @xenova/transformers ``` **Example:** Upscale an image with `Xenova/swin2SR-lightweight-x2-64`. ```js import { pipeline } from '@xenova/transformers'; // Create image-to-image pipeline const upscaler = await pipeline('image-to-image', 'Xenova/swin2SR-lightweight-x2-64', { // quantized: false, // Uncomment this line to use the quantized version }); // Upscale an image const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/butterfly.jpg'; const output = await upscaler(url); // RawImage { // data: Uint8Array(786432) [ ... ], // width: 512, // height: 512, // channels: 3 // } // (Optional) Save the upscaled image output.save('upscaled.png'); ```
See example output Input image: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/eqLyvsErNQvXAFDD2MylF.png) Output image: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/j1c7j-BQGDQMOQeWpSKvh.png)
--- Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).