File size: 1,725 Bytes
012ea01
70ad9ba
012ea01
41e7d75
012ea01
 
 
 
9141dfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
012ea01
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
---
base_model: vikp/texify
library_name: transformers.js
pipeline_tag: image-to-text
---

https://huggingface.co/vikp/texify with ONNX weights to be compatible with Transformers.js.

## Usage (Transformers.js)

If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
```bash
npm i @xenova/transformers
```

**Example:** Image-to-text w/ `Xenova/texify`.

```js
import { pipeline } from '@xenova/transformers';

// Create an image-to-text pipeline
const texify = await pipeline('image-to-text', 'Xenova/texify');

// Generate LaTeX from image
const image = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/latex2.png';
const latex = await texify(image, { max_new_tokens: 384 });
console.log(latex);
// [{ generated_text: "$$ |\\ \\frac{1}{x}=\\frac{1}{c}|=|\\ \\frac{c-x}{xc}|=\\frac{1}{|x|}\\cdot\\frac{1}{|c|}\\cdot|x-c|$$\n\nThe factor $$ \\frac{1}{|x|}$$ is not good if its near 0." }]
```

| Input image | Visualized output |
|--------|--------|
| ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/2wuLARy79CfVxqOLgrhDd.png) | ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/chMw_jp7StOEhS0yOdL94.png) |

---

Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).