Xenova HF staff commited on
Commit
cfa323b
·
verified ·
1 Parent(s): 18bbc8b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +189 -1
README.md CHANGED
@@ -3,4 +3,192 @@ library_name: transformers.js
3
  tags:
4
  - pose-estimation
5
  license: agpl-3.0
6
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  tags:
4
  - pose-estimation
5
  license: agpl-3.0
6
+ ---
7
+
8
+ YOLOv8x-pose-p6 with ONNX weights to be compatible with Transformers.js.
9
+
10
+ ## Usage (Transformers.js)
11
+
12
+ If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
13
+ ```bash
14
+ npm i @xenova/transformers
15
+ ```
16
+
17
+ **Example:** Perform pose-estimation w/ `Xenova/yolov8x-pose-p6`.
18
+
19
+ ```js
20
+ import { AutoModel, AutoProcessor, RawImage } from '@xenova/transformers';
21
+
22
+ // Load model and processor
23
+ const model_id = 'Xenova/yolov8x-pose-p6';
24
+ const model = await AutoModel.from_pretrained(model_id);
25
+ const processor = await AutoProcessor.from_pretrained(model_id);
26
+
27
+ // Read image and run processor
28
+ const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/football-match.jpg';
29
+ const image = await RawImage.read(url);
30
+ const { pixel_values } = await processor(image);
31
+
32
+ // Set thresholds
33
+ const threshold = 0.3; // Remove detections with low confidence
34
+ const iouThreshold = 0.5; // Used to remove duplicates
35
+ const pointThreshold = 0.3; // Hide uncertain points
36
+
37
+ // Predict bounding boxes and keypoints
38
+ const { output0 } = await model({ images: pixel_values });
39
+
40
+ // Post-process:
41
+ const permuted = output0[0].transpose(1, 0);
42
+ // `permuted` is a Tensor of shape [ 8400, 56 ]:
43
+ // - 8400 potential detections
44
+ // - 56 parameters for each box:
45
+ // - 4 for the bounding box dimensions (x-center, y-center, width, height)
46
+ // - 1 for the confidence score
47
+ // - 17 * 3 = 51 for the pose keypoints: 17 labels, each with (x, y, visibilitiy)
48
+
49
+ // Example code to format it nicely:
50
+ const results = [];
51
+ const [scaledHeight, scaledWidth] = pixel_values.dims.slice(-2);
52
+ for (const [xc, yc, w, h, score, ...keypoints] of permuted.tolist()) {
53
+ if (score < threshold) continue;
54
+
55
+ // Get pixel values, taking into account the original image size
56
+ const x1 = (xc - w / 2) / scaledWidth * image.width;
57
+ const y1 = (yc - h / 2) / scaledHeight * image.height;
58
+ const x2 = (xc + w / 2) / scaledWidth * image.width;
59
+ const y2 = (yc + h / 2) / scaledHeight * image.height;
60
+ results.push({ x1, x2, y1, y2, score, keypoints })
61
+ }
62
+
63
+
64
+ // Define helper functions
65
+ function removeDuplicates(detections, iouThreshold) {
66
+ const filteredDetections = [];
67
+
68
+ for (const detection of detections) {
69
+ let isDuplicate = false;
70
+ let duplicateIndex = -1;
71
+ let maxIoU = 0;
72
+
73
+ for (let i = 0; i < filteredDetections.length; ++i) {
74
+ const filteredDetection = filteredDetections[i];
75
+ const iou = calculateIoU(detection, filteredDetection);
76
+ if (iou > iouThreshold) {
77
+ isDuplicate = true;
78
+ if (iou > maxIoU) {
79
+ maxIoU = iou;
80
+ duplicateIndex = i;
81
+ }
82
+ }
83
+ }
84
+
85
+ if (!isDuplicate) {
86
+ filteredDetections.push(detection);
87
+ } else if (duplicateIndex !== -1 && detection.score > filteredDetections[duplicateIndex].score) {
88
+ filteredDetections[duplicateIndex] = detection;
89
+ }
90
+ }
91
+
92
+ return filteredDetections;
93
+ }
94
+
95
+ function calculateIoU(detection1, detection2) {
96
+ const xOverlap = Math.max(0, Math.min(detection1.x2, detection2.x2) - Math.max(detection1.x1, detection2.x1));
97
+ const yOverlap = Math.max(0, Math.min(detection1.y2, detection2.y2) - Math.max(detection1.y1, detection2.y1));
98
+ const overlapArea = xOverlap * yOverlap;
99
+
100
+ const area1 = (detection1.x2 - detection1.x1) * (detection1.y2 - detection1.y1);
101
+ const area2 = (detection2.x2 - detection2.x1) * (detection2.y2 - detection2.y1);
102
+ const unionArea = area1 + area2 - overlapArea;
103
+
104
+ return overlapArea / unionArea;
105
+ }
106
+
107
+ const filteredResults = removeDuplicates(results, iouThreshold);
108
+
109
+ // Display results
110
+ for (const { x1, x2, y1, y2, score, keypoints } of filteredResults) {
111
+ console.log(`Found person at [${x1}, ${y1}, ${x2}, ${y2}] with score ${score.toFixed(3)}`)
112
+ for (let i = 0; i < keypoints.length; i += 3) {
113
+ const label = model.config.id2label[Math.floor(i / 3)];
114
+ const [x, y, point_score] = keypoints.slice(i, i + 3);
115
+ if (point_score < pointThreshold) continue;
116
+ console.log(` - ${label}: (${x.toFixed(2)}, ${y.toFixed(2)}) with score ${point_score.toFixed(3)}`);
117
+ }
118
+ }
119
+ ```
120
+
121
+ <details>
122
+
123
+ <summary>See example output</summary>
124
+
125
+ ```
126
+ Found person at [535.95703125, 43.12074284553528, 644.3259429931641, 337.3436294078827] with score 0.760
127
+ - nose: (885.58, 179.72) with score 0.975
128
+ - left_eye: (897.09, 165.24) with score 0.976
129
+ - right_eye: (874.85, 164.54) with score 0.851
130
+ - left_ear: (914.39, 169.48) with score 0.806
131
+ - left_shoulder: (947.49, 252.34) with score 0.996
132
+ - right_shoulder: (840.67, 244.42) with score 0.665
133
+ - left_elbow: (1001.36, 351.66) with score 0.983
134
+ - left_wrist: (1011.84, 472.31) with score 0.954
135
+ - left_hip: (931.52, 446.28) with score 0.986
136
+ - right_hip: (860.66, 442.87) with score 0.828
137
+ - left_knee: (930.67, 625.64) with score 0.979
138
+ - right_knee: (872.17, 620.36) with score 0.735
139
+ - left_ankle: (929.01, 772.34) with score 0.880
140
+ - right_ankle: (882.23, 778.68) with score 0.454
141
+ Found person at [0.4024791717529297, 59.50179467201233, 156.87244415283203, 370.64377751350406] with score 0.853
142
+ - nose: (115.39, 198.06) with score 0.918
143
+ - left_eye: (120.26, 177.71) with score 0.830
144
+ - right_eye: (105.47, 179.69) with score 0.757
145
+ - left_ear: (144.87, 185.18) with score 0.711
146
+ - right_ear: (97.69, 188.45) with score 0.468
147
+ - left_shoulder: (178.03, 268.88) with score 0.975
148
+ - right_shoulder: (80.69, 273.99) with score 0.954
149
+ - left_elbow: (203.06, 383.33) with score 0.923
150
+ - right_elbow: (43.32, 376.35) with score 0.856
151
+ - left_wrist: (215.74, 504.02) with score 0.888
152
+ - right_wrist: (6.77, 462.65) with score 0.812
153
+ - left_hip: (165.70, 473.24) with score 0.990
154
+ - right_hip: (97.84, 471.69) with score 0.986
155
+ - left_knee: (183.26, 646.61) with score 0.991
156
+ - right_knee: (104.04, 651.17) with score 0.989
157
+ - left_ankle: (199.88, 823.24) with score 0.966
158
+ - right_ankle: (104.66, 827.66) with score 0.963
159
+ Found person at [107.49130249023438, 12.557352638244629, 501.3542175292969, 527.4827188491821] with score 0.872
160
+ - nose: (246.06, 180.81) with score 0.722
161
+ - left_eye: (236.99, 148.85) with score 0.523
162
+ - left_ear: (289.26, 152.23) with score 0.770
163
+ - left_shoulder: (391.63, 256.55) with score 0.992
164
+ - right_shoulder: (363.28, 294.56) with score 0.979
165
+ - left_elbow: (514.37, 404.61) with score 0.990
166
+ - right_elbow: (353.58, 523.61) with score 0.957
167
+ - left_wrist: (607.64, 530.43) with score 0.985
168
+ - right_wrist: (246.78, 536.33) with score 0.950
169
+ - left_hip: (563.45, 577.89) with score 0.998
170
+ - right_hip: (544.08, 613.29) with score 0.997
171
+ - left_knee: (466.57, 862.51) with score 0.996
172
+ - right_knee: (518.49, 977.99) with score 0.996
173
+ - left_ankle: (691.56, 844.49) with score 0.960
174
+ - right_ankle: (671.32, 1100.90) with score 0.953
175
+ Found person at [424.73594665527344, 68.82870757579803, 640.3419494628906, 492.8904126405716] with score 0.887
176
+ - nose: (840.26, 289.19) with score 0.991
177
+ - left_eye: (851.23, 259.92) with score 0.956
178
+ - right_eye: (823.10, 256.35) with score 0.955
179
+ - left_ear: (889.52, 278.10) with score 0.668
180
+ - right_ear: (799.80, 264.64) with score 0.771
181
+ - left_shoulder: (903.87, 398.65) with score 0.997
182
+ - right_shoulder: (743.88, 403.37) with score 0.988
183
+ - left_elbow: (921.63, 589.83) with score 0.989
184
+ - right_elbow: (699.56, 527.09) with score 0.934
185
+ - left_wrist: (959.21, 728.84) with score 0.984
186
+ - right_wrist: (790.88, 519.34) with score 0.945
187
+ - left_hip: (873.51, 720.07) with score 0.996
188
+ - right_hip: (762.29, 760.91) with score 0.990
189
+ - left_knee: (945.33, 841.65) with score 0.987
190
+ - right_knee: (813.06, 1072.57) with score 0.964
191
+ - left_ankle: (918.48, 1129.20) with score 0.871
192
+ - right_ankle: (886.91, 1053.95) with score 0.716
193
+ ```
194
+ </details>