Add/update the quantized ONNX model files and README.md for Transformers.js v3
Browse files## Applied Quantizations
### ✅ Based on `model.onnx` *without* slimming
README.md
CHANGED
@@ -6,23 +6,22 @@ pipeline_tag: object-detection
|
|
6 |
|
7 |
https://github.com/WongKinYiu/yolov9 with ONNX weights to be compatible with Transformers.js.
|
8 |
|
9 |
-
|
10 |
## Usage (Transformers.js)
|
11 |
|
12 |
-
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@
|
13 |
```bash
|
14 |
-
npm i @
|
15 |
```
|
16 |
|
17 |
**Example:** Perform object-detection with `Xenova/yolov9-c`.
|
18 |
|
19 |
```js
|
20 |
-
import { AutoModel, AutoProcessor, RawImage } from '@
|
21 |
|
22 |
// Load model
|
23 |
const model = await AutoModel.from_pretrained('Xenova/yolov9-c', {
|
24 |
-
|
25 |
-
})
|
26 |
|
27 |
// Load processor
|
28 |
const processor = await AutoProcessor.from_pretrained('Xenova/yolov9-c');
|
@@ -35,12 +34,12 @@ const image = await RawImage.read(url);
|
|
35 |
const { pixel_values } = await processor(image);
|
36 |
|
37 |
// Run object detection
|
38 |
-
const { outputs } = await model({ images: pixel_values })
|
39 |
const predictions = outputs.tolist();
|
40 |
|
41 |
for (const [xmin, ymin, xmax, ymax, score, id] of predictions) {
|
42 |
-
const bbox = [xmin, ymin, xmax, ymax].map(x => x.toFixed(2)).join(', ')
|
43 |
-
console.log(`Found "${model.config.id2label[id]}" at [${bbox}] with score ${score.toFixed(2)}.`)
|
44 |
}
|
45 |
// Found "car" at [176.86, 335.53, 399.82, 418.13] with score 0.94.
|
46 |
// Found "car" at [447.50, 378.46, 639.81, 477.57] with score 0.93.
|
@@ -59,5 +58,4 @@ Test it out [here](https://huggingface.co/spaces/Xenova/yolov9-web)!
|
|
59 |
|
60 |
---
|
61 |
|
62 |
-
|
63 |
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
|
|
|
6 |
|
7 |
https://github.com/WongKinYiu/yolov9 with ONNX weights to be compatible with Transformers.js.
|
8 |
|
|
|
9 |
## Usage (Transformers.js)
|
10 |
|
11 |
+
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
|
12 |
```bash
|
13 |
+
npm i @huggingface/transformers
|
14 |
```
|
15 |
|
16 |
**Example:** Perform object-detection with `Xenova/yolov9-c`.
|
17 |
|
18 |
```js
|
19 |
+
import { AutoModel, AutoProcessor, RawImage } from '@huggingface/transformers';
|
20 |
|
21 |
// Load model
|
22 |
const model = await AutoModel.from_pretrained('Xenova/yolov9-c', {
|
23 |
+
dtype: 'fp32', // (Optional) Use unquantized version.
|
24 |
+
});
|
25 |
|
26 |
// Load processor
|
27 |
const processor = await AutoProcessor.from_pretrained('Xenova/yolov9-c');
|
|
|
34 |
const { pixel_values } = await processor(image);
|
35 |
|
36 |
// Run object detection
|
37 |
+
const { outputs } = await model({ images: pixel_values });
|
38 |
const predictions = outputs.tolist();
|
39 |
|
40 |
for (const [xmin, ymin, xmax, ymax, score, id] of predictions) {
|
41 |
+
const bbox = [xmin, ymin, xmax, ymax].map(x => x.toFixed(2)).join(', ');
|
42 |
+
console.log(`Found "${model.config.id2label[id]}" at [${bbox}] with score ${score.toFixed(2)}.`);
|
43 |
}
|
44 |
// Found "car" at [176.86, 335.53, 399.82, 418.13] with score 0.94.
|
45 |
// Found "car" at [447.50, 378.46, 639.81, 477.57] with score 0.93.
|
|
|
58 |
|
59 |
---
|
60 |
|
|
|
61 |
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
|