File size: 3,498 Bytes
521ba82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
"""Fast tokenization classes for Shami."""
import json
from typing import TYPE_CHECKING, List, Optional, Tuple

from tokenizers import pre_tokenizers

from transformers.tokenization_utils_base import BatchEncoding
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
from transformers.utils import logging


if TYPE_CHECKING:
    from transformers.pipelines.conversational import Conversation


logger = logging.get_logger(__name__)

VOCAB_FILES_NAMES = {"tokenizer_file": "tokenizer.json"}

PRETRAINED_VOCAB_FILES_MAP = {
    "tokenizer_file": {
    },
}

class ShamiTokenizerFast(PreTrainedTokenizerFast):
    vocab_files_names = VOCAB_FILES_NAMES
    pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
    model_input_names = ["input_ids", "attention_mask"]
    slow_tokenizer_class = None

    def __init__(
        self,
        vocab_file=None,
        merges_file=None,
        tokenizer_file=None,
        unk_token="<|endoftext|>",
        bos_token="<|endoftext|>",
        eos_token="<|endoftext|>",
        pad_token="<|endoftext|>",
        add_prefix_space=False,
        **kwargs
    ):
        super().__init__(
            vocab_file,
            merges_file,
            tokenizer_file=tokenizer_file,
            unk_token=unk_token,
            bos_token=bos_token,
            eos_token=eos_token,
            pad_token=pad_token,
            add_prefix_space=add_prefix_space,
            **kwargs,
        )
        pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
        if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space:
            pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type"))
            pre_tok_state["add_prefix_space"] = add_prefix_space
            self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state)

        self.add_prefix_space = add_prefix_space

    def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding:
        is_split_into_words = kwargs.get("is_split_into_words", False)
        if not (self.add_prefix_space or not is_split_into_words):
            raise Exception(
                f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with"
                " pretokenized inputs."
            )

        return super()._batch_encode_plus(*args, **kwargs)

    def _encode_plus(self, *args, **kwargs) -> BatchEncoding:
        is_split_into_words = kwargs.get("is_split_into_words", False)

        if not (self.add_prefix_space or not is_split_into_words):
            raise Exception(
                f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with"
                " pretokenized inputs."
            )

        return super()._encode_plus(*args, **kwargs)

    def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
        files = self._tokenizer.model.save(save_directory, name=filename_prefix)
        return tuple(files)

    def _build_conversation_input_ids(self, conversation: "Conversation") -> List[int]:
        """This corresponds to DialoGPT variants of models."""
        input_ids = []
        for is_user, text in conversation.iter_texts():
            input_ids.extend(self.encode(text, add_special_tokens=False) + [self.eos_token_id])

        if len(input_ids) > self.model_max_length:
            input_ids = input_ids[-self.model_max_length :]
        return input_ids