jstzwj
commited on
Commit
•
521ba82
1
Parent(s):
ab790b6
add code
Browse files- tokenization_shami.py +273 -0
- tokenization_shami_fast.py +95 -0
tokenization_shami.py
ADDED
@@ -0,0 +1,273 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Tokenization classes for Shami."""
|
2 |
+
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
from functools import lru_cache
|
6 |
+
from typing import List, Optional, Tuple
|
7 |
+
|
8 |
+
import regex as re
|
9 |
+
|
10 |
+
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
11 |
+
from transformers.utils import logging
|
12 |
+
|
13 |
+
|
14 |
+
logger = logging.get_logger(__name__)
|
15 |
+
|
16 |
+
VOCAB_FILES_NAMES = {
|
17 |
+
"vocab_file": "tokenizer.json",
|
18 |
+
}
|
19 |
+
|
20 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
21 |
+
"vocab_file": {
|
22 |
+
},
|
23 |
+
}
|
24 |
+
|
25 |
+
|
26 |
+
@lru_cache()
|
27 |
+
def bytes_to_unicode():
|
28 |
+
"""
|
29 |
+
Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
|
30 |
+
characters the bpe code barfs on.
|
31 |
+
The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
|
32 |
+
if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
|
33 |
+
decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
|
34 |
+
tables between utf-8 bytes and unicode strings.
|
35 |
+
"""
|
36 |
+
bs = (
|
37 |
+
list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
|
38 |
+
)
|
39 |
+
cs = bs[:]
|
40 |
+
n = 0
|
41 |
+
for b in range(2**8):
|
42 |
+
if b not in bs:
|
43 |
+
bs.append(b)
|
44 |
+
cs.append(2**8 + n)
|
45 |
+
n += 1
|
46 |
+
cs = [chr(n) for n in cs]
|
47 |
+
return dict(zip(bs, cs))
|
48 |
+
|
49 |
+
|
50 |
+
def get_pairs(word):
|
51 |
+
"""
|
52 |
+
Return set of symbol pairs in a word.
|
53 |
+
Word is represented as tuple of symbols (symbols being variable-length strings).
|
54 |
+
"""
|
55 |
+
pairs = set()
|
56 |
+
prev_char = word[0]
|
57 |
+
for char in word[1:]:
|
58 |
+
pairs.add((prev_char, char))
|
59 |
+
prev_char = char
|
60 |
+
return pairs
|
61 |
+
|
62 |
+
|
63 |
+
class ShamiTokenizer(PreTrainedTokenizer):
|
64 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
65 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
66 |
+
model_input_names = ["input_ids", "attention_mask"]
|
67 |
+
|
68 |
+
def __init__(
|
69 |
+
self,
|
70 |
+
vocab_file,
|
71 |
+
errors="replace",
|
72 |
+
unk_token="<|endoftext|>",
|
73 |
+
bos_token="<|endoftext|>",
|
74 |
+
eos_token="<|endoftext|>",
|
75 |
+
pad_token=None,
|
76 |
+
add_prefix_space=False,
|
77 |
+
add_bos_token=False,
|
78 |
+
**kwargs
|
79 |
+
):
|
80 |
+
self.add_bos_token = add_bos_token
|
81 |
+
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
|
82 |
+
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
|
83 |
+
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
|
84 |
+
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
|
85 |
+
|
86 |
+
super().__init__(
|
87 |
+
errors=errors,
|
88 |
+
bos_token=bos_token,
|
89 |
+
eos_token=eos_token,
|
90 |
+
unk_token=unk_token,
|
91 |
+
pad_token=pad_token,
|
92 |
+
add_prefix_space=add_prefix_space,
|
93 |
+
**kwargs,
|
94 |
+
)
|
95 |
+
|
96 |
+
with open(vocab_file, encoding="utf-8") as vocab_handle:
|
97 |
+
self.vocab = json.load(vocab_handle)
|
98 |
+
self.encoder = self.vocab["model"]["vocab"]
|
99 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
100 |
+
self.errors = errors # how to handle errors in decoding
|
101 |
+
self.byte_encoder = bytes_to_unicode()
|
102 |
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
103 |
+
|
104 |
+
bpe_merges = self.vocab["model"]["merges"]
|
105 |
+
bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
|
106 |
+
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
|
107 |
+
self.cache = {}
|
108 |
+
self.add_prefix_space = add_prefix_space
|
109 |
+
|
110 |
+
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
|
111 |
+
self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
|
112 |
+
|
113 |
+
@property
|
114 |
+
def vocab_size(self):
|
115 |
+
return len(self.encoder)
|
116 |
+
|
117 |
+
def get_vocab(self):
|
118 |
+
return dict(self.encoder, **self.added_tokens_encoder)
|
119 |
+
|
120 |
+
def bpe(self, token):
|
121 |
+
if token in self.cache:
|
122 |
+
return self.cache[token]
|
123 |
+
word = tuple(token)
|
124 |
+
pairs = get_pairs(word)
|
125 |
+
|
126 |
+
if not pairs:
|
127 |
+
return token
|
128 |
+
|
129 |
+
while True:
|
130 |
+
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
|
131 |
+
if bigram not in self.bpe_ranks:
|
132 |
+
break
|
133 |
+
first, second = bigram
|
134 |
+
new_word = []
|
135 |
+
i = 0
|
136 |
+
while i < len(word):
|
137 |
+
try:
|
138 |
+
j = word.index(first, i)
|
139 |
+
except ValueError:
|
140 |
+
new_word.extend(word[i:])
|
141 |
+
break
|
142 |
+
else:
|
143 |
+
new_word.extend(word[i:j])
|
144 |
+
i = j
|
145 |
+
|
146 |
+
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
147 |
+
new_word.append(first + second)
|
148 |
+
i += 2
|
149 |
+
else:
|
150 |
+
new_word.append(word[i])
|
151 |
+
i += 1
|
152 |
+
new_word = tuple(new_word)
|
153 |
+
word = new_word
|
154 |
+
if len(word) == 1:
|
155 |
+
break
|
156 |
+
else:
|
157 |
+
pairs = get_pairs(word)
|
158 |
+
word = " ".join(word)
|
159 |
+
self.cache[token] = word
|
160 |
+
return word
|
161 |
+
|
162 |
+
def _tokenize(self, text):
|
163 |
+
"""Tokenize a string."""
|
164 |
+
bpe_tokens = []
|
165 |
+
for token in re.findall(self.pat, text):
|
166 |
+
token = "".join(
|
167 |
+
self.byte_encoder[b] for b in token.encode("utf-8")
|
168 |
+
) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
|
169 |
+
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
|
170 |
+
return bpe_tokens
|
171 |
+
|
172 |
+
def _convert_token_to_id(self, token):
|
173 |
+
"""Converts a token (str) in an id using the vocab."""
|
174 |
+
return self.encoder.get(token, self.encoder.get(self.unk_token))
|
175 |
+
|
176 |
+
def _convert_id_to_token(self, index):
|
177 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
178 |
+
return self.decoder.get(index)
|
179 |
+
|
180 |
+
def convert_tokens_to_string(self, tokens):
|
181 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
182 |
+
text = "".join(tokens)
|
183 |
+
text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
|
184 |
+
return text
|
185 |
+
|
186 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
187 |
+
if not os.path.isdir(save_directory):
|
188 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
189 |
+
return
|
190 |
+
vocab_file = os.path.join(
|
191 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
192 |
+
)
|
193 |
+
merge_file = os.path.join(
|
194 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
|
195 |
+
)
|
196 |
+
|
197 |
+
with open(vocab_file, "w", encoding="utf-8") as f:
|
198 |
+
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
|
199 |
+
|
200 |
+
index = 0
|
201 |
+
with open(merge_file, "w", encoding="utf-8") as writer:
|
202 |
+
writer.write("#version: 0.2\n")
|
203 |
+
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
|
204 |
+
if index != token_index:
|
205 |
+
logger.warning(
|
206 |
+
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
|
207 |
+
" Please check that the tokenizer is not corrupted!"
|
208 |
+
)
|
209 |
+
index = token_index
|
210 |
+
writer.write(" ".join(bpe_tokens) + "\n")
|
211 |
+
index += 1
|
212 |
+
|
213 |
+
return vocab_file, merge_file
|
214 |
+
|
215 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
216 |
+
if self.add_bos_token:
|
217 |
+
bos_token_ids = [self.bos_token_id]
|
218 |
+
else:
|
219 |
+
bos_token_ids = []
|
220 |
+
|
221 |
+
output = bos_token_ids + token_ids_0
|
222 |
+
|
223 |
+
if token_ids_1 is None:
|
224 |
+
return output
|
225 |
+
|
226 |
+
return output + bos_token_ids + token_ids_1
|
227 |
+
|
228 |
+
def get_special_tokens_mask(
|
229 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
230 |
+
) -> List[int]:
|
231 |
+
"""
|
232 |
+
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
|
233 |
+
special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
|
234 |
+
Args:
|
235 |
+
token_ids_0 (`List[int]`):
|
236 |
+
List of IDs.
|
237 |
+
token_ids_1 (`List[int]`, *optional*):
|
238 |
+
Optional second list of IDs for sequence pairs.
|
239 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
240 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
241 |
+
Returns:
|
242 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
243 |
+
"""
|
244 |
+
if already_has_special_tokens:
|
245 |
+
return super().get_special_tokens_mask(
|
246 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
247 |
+
)
|
248 |
+
|
249 |
+
if not self.add_bos_token:
|
250 |
+
return super().get_special_tokens_mask(
|
251 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=False
|
252 |
+
)
|
253 |
+
|
254 |
+
if token_ids_1 is None:
|
255 |
+
return [1] + ([0] * len(token_ids_0))
|
256 |
+
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1))
|
257 |
+
|
258 |
+
|
259 |
+
def create_token_type_ids_from_sequences(
|
260 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
261 |
+
) -> List[int]:
|
262 |
+
sep = [self.sep_token_id]
|
263 |
+
cls = [self.cls_token_id]
|
264 |
+
|
265 |
+
if token_ids_1 is None:
|
266 |
+
return len(cls + token_ids_0 + sep) * [0]
|
267 |
+
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
|
268 |
+
|
269 |
+
def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
|
270 |
+
add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space)
|
271 |
+
if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()):
|
272 |
+
text = " " + text
|
273 |
+
return (text, kwargs)
|
tokenization_shami_fast.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Fast tokenization classes for Shami."""
|
2 |
+
import json
|
3 |
+
from typing import TYPE_CHECKING, List, Optional, Tuple
|
4 |
+
|
5 |
+
from tokenizers import pre_tokenizers
|
6 |
+
|
7 |
+
from transformers.tokenization_utils_base import BatchEncoding
|
8 |
+
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
|
9 |
+
from transformers.utils import logging
|
10 |
+
|
11 |
+
|
12 |
+
if TYPE_CHECKING:
|
13 |
+
from transformers.pipelines.conversational import Conversation
|
14 |
+
|
15 |
+
|
16 |
+
logger = logging.get_logger(__name__)
|
17 |
+
|
18 |
+
VOCAB_FILES_NAMES = {"tokenizer_file": "tokenizer.json"}
|
19 |
+
|
20 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
21 |
+
"tokenizer_file": {
|
22 |
+
},
|
23 |
+
}
|
24 |
+
|
25 |
+
class ShamiTokenizerFast(PreTrainedTokenizerFast):
|
26 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
27 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
28 |
+
model_input_names = ["input_ids", "attention_mask"]
|
29 |
+
slow_tokenizer_class = None
|
30 |
+
|
31 |
+
def __init__(
|
32 |
+
self,
|
33 |
+
vocab_file=None,
|
34 |
+
merges_file=None,
|
35 |
+
tokenizer_file=None,
|
36 |
+
unk_token="<|endoftext|>",
|
37 |
+
bos_token="<|endoftext|>",
|
38 |
+
eos_token="<|endoftext|>",
|
39 |
+
pad_token="<|endoftext|>",
|
40 |
+
add_prefix_space=False,
|
41 |
+
**kwargs
|
42 |
+
):
|
43 |
+
super().__init__(
|
44 |
+
vocab_file,
|
45 |
+
merges_file,
|
46 |
+
tokenizer_file=tokenizer_file,
|
47 |
+
unk_token=unk_token,
|
48 |
+
bos_token=bos_token,
|
49 |
+
eos_token=eos_token,
|
50 |
+
pad_token=pad_token,
|
51 |
+
add_prefix_space=add_prefix_space,
|
52 |
+
**kwargs,
|
53 |
+
)
|
54 |
+
pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
|
55 |
+
if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space:
|
56 |
+
pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type"))
|
57 |
+
pre_tok_state["add_prefix_space"] = add_prefix_space
|
58 |
+
self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state)
|
59 |
+
|
60 |
+
self.add_prefix_space = add_prefix_space
|
61 |
+
|
62 |
+
def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding:
|
63 |
+
is_split_into_words = kwargs.get("is_split_into_words", False)
|
64 |
+
if not (self.add_prefix_space or not is_split_into_words):
|
65 |
+
raise Exception(
|
66 |
+
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with"
|
67 |
+
" pretokenized inputs."
|
68 |
+
)
|
69 |
+
|
70 |
+
return super()._batch_encode_plus(*args, **kwargs)
|
71 |
+
|
72 |
+
def _encode_plus(self, *args, **kwargs) -> BatchEncoding:
|
73 |
+
is_split_into_words = kwargs.get("is_split_into_words", False)
|
74 |
+
|
75 |
+
if not (self.add_prefix_space or not is_split_into_words):
|
76 |
+
raise Exception(
|
77 |
+
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with"
|
78 |
+
" pretokenized inputs."
|
79 |
+
)
|
80 |
+
|
81 |
+
return super()._encode_plus(*args, **kwargs)
|
82 |
+
|
83 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
84 |
+
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
|
85 |
+
return tuple(files)
|
86 |
+
|
87 |
+
def _build_conversation_input_ids(self, conversation: "Conversation") -> List[int]:
|
88 |
+
"""This corresponds to DialoGPT variants of models."""
|
89 |
+
input_ids = []
|
90 |
+
for is_user, text in conversation.iter_texts():
|
91 |
+
input_ids.extend(self.encode(text, add_special_tokens=False) + [self.eos_token_id])
|
92 |
+
|
93 |
+
if len(input_ids) > self.model_max_length:
|
94 |
+
input_ids = input_ids[-self.model_max_length :]
|
95 |
+
return input_ids
|