File size: 31,787 Bytes
9d4fa34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
---
base_model: Snowflake/snowflake-arctic-embed-m
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:600
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: How can high compute resource utilization in training GAI models
    affect ecosystems?
  sentences:
  - "should not be used in education, work, housing, or in other contexts where the\
    \ use of such surveillance \ntechnologies is likely to limit rights, opportunities,\
    \ or access. Whenever possible, you should have access to \nreporting that confirms\
    \ your data decisions have been respected and provides an assessment of the \n\
    potential impact of surveillance technologies on your rights, opportunities, or\
    \ access. \nNOTICE AND EXPLANATION"
  - "Legal Disclaimer \nThe Blueprint for an AI Bill of Rights: Making Automated Systems\
    \ Work for the American People is a white paper \npublished by the White House\
    \ Office of Science and Technology Policy. It is intended to support the \ndevelopment\
    \ of policies and practices that protect civil rights and promote democratic values\
    \ in the building, \ndeployment, and governance of automated systems. \nThe Blueprint\
    \ for an AI Bill of Rights is non-binding and does not constitute U.S. government\
    \ policy. It \ndoes not supersede, modify, or direct an interpretation of any\
    \ existing statute, regulation, policy, or \ninternational instrument. It does\
    \ not constitute binding guidance for the public or Federal agencies and"
  - "or stereotyping content . \n4. Data Privacy: Impacts due to l eakage and unauthorized\
    \ use, disclosure , or de -anonymization of \nbiometric, health, location , or\
    \ other  personally identifiable information  or sensitive data .7 \n5. Environmental\
    \ Impacts: Impacts due to high compute resource utilization in training or \n\
    operating GAI models, and related outcomes that may adversely impact ecosystems.\
    \  \n6. Harmful Bias or Homogenization: Amplification and exacerbation of  historical,\
    \  societal, and \nsystemic  biases ; performance disparities8 between  sub- groups\
    \ or languages , possibly due to \nnon- representative training data , that result\
    \ in discrimination, amplification of biases, or"
- source_sentence: What are the potential risks associated with human-AI configuration
    in GAI systems?
  sentences:
  - "establish approved GAI technology and service provider lists.  Value Chain and\
    \ Component \nIntegration  \nGV-6.1-0 08 Maintain records of changes to content\
    \ made by third parties to promote content \nprovenance, including sources, timestamps,\
    \ metadata . Information Integrity ; Value Chain \nand Component Integration;\
    \ Intellectual Property  \nGV-6.1-0 09 Update and integrate due diligence processes\
    \ for GAI acquisition and \nprocurement vendor assessments to include intellectual\
    \ property, data privacy, security, and other risks. For example, update p rocesses\
    \ \nto: Address solutions that \nmay rely on embedded GAI technologies; Address\
    \ ongoing monitoring , \nassessments, and alerting, dynamic risk assessments,\
    \ and real -time reporting"
  - "could lead to homogenized outputs, including by amplifying any homogenization\
    \ from the model used to \ngenerate the synthetic training data . \nTrustworthy\
    \ AI Characteristics:  Fair with Harmful Bias Managed, Valid and Reliable  \n\
    2.7. Human -AI Configuration  \nGAI system  use can involve varying risks of misconfigurations\
    \  and poor interactions  between a system \nand a human who is interacti ng with\
    \ it. Humans bring their  unique perspectives , experiences , or domain -\nspecific\
    \ expertise to interactions with AI systems  but may not have detailed knowledge\
    \ of AI systems and \nhow they work.  As a result, h uman experts may be unnecessarily\
    \ “averse ” to GAI systems , and thus \ndeprive themselves  or others  of GAI’s\
    \ beneficial uses ."
  - "requests image features that are inconsistent with the  stereotypes.  Harmful\
    \ b ias in GAI models , which \nmay stem from their training data , can also \
    \ cause representational  harm s or perpetuate  or exacerbate  \nbias based on\
    \ race, gender, disability, or other protected classes .  \nHarmful b ias in GAI\
    \ systems can also lead to harms via disparities between how a model performs\
    \ for \ndifferent subgroups or languages  (e.g., an LLM may perform  less well\
    \ for non- English languages  or \ncertain dialects ). Such disparities can contribute\
    \ to discriminatory decision -making or amplification of \nexisting societal biases.\
    \  In addition,  GAI systems may be inappropriately trusted to perform similarly"
- source_sentence: What types of content are considered harmful biases in the context
    of information security?
  sentences:
  - "MS-2.5-0 05 Verify GAI system training data and TEVV data provenance, and that\
    \ fine -tuning  \nor retrieval- augmented generation data is grounded.  Information\
    \ Integrity  \nMS-2.5-0 06 Regularly review security and safety guardrails, especially\
    \ if the GAI system is \nbeing operated in novel circumstances. This includes\
    \ reviewing reasons why the \nGAI system was initially assessed as being safe\
    \ to deploy.  Information Security ; Dangerous , \nViolent, or Hateful  Content\
    \  \nAI Actor Tasks:  Domain Experts, TEVV"
  - "to diminished transparency or accountability for downstream users.  While  this\
    \ is a risk for traditional AI \nsystems  and some other digital technologies\
    \ , the risk is exacerbated for GAI due to the scale of the \ntraining data, which\
    \ may be too large for humans to vet; the  difficulty of training foundation models,\
    \ \nwhich leads to extensive reuse of limited numbers of models; an d the extent\
    \ to which GAI may be \nintegrat ed into other  devices and services.  As GAI\
    \ systems often involve many distinct  third -party \ncomponents and data sources\
    \ , it may be difficult to attribute issues in a system’s behavior to any one of\
    \ \nthese sources.  \nErrors in t hird-party GAI components can also have downstream\
    \ impacts  on accuracy and robustness ."
  - "biases in the generated content.  Information Security ; Harmful Bias \nand Homogenization\
    \  \nMG-2.2-005 Engage in due diligence to analyze  GAI output for harmful content,\
    \ potential \nmisinformation , and CBRN -related or NCII content . CBRN Information\
    \ or Capabilities ; \nObscene, Degrading, and/or \nAbusive Content ; Harmful Bias\
    \ and \nHomogenization ; Dangerous , \nViolent, or Hateful Content"
- source_sentence: What is the focus of the paper by Padmakumar et al (2024) regarding
    language models and content diversity?
  sentences:
  - "Content  \nMS-2.12- 002 Document anticipated environmental impacts of model development,\
    \ \nmaintenance, and deployment in product design decisions.  Environmental  \n\
    MS-2.12- 003 Measure or estimate environmental impacts (e.g., energy and water\
    \ \nconsumption) for training, fine tuning, and deploying models: Verify tradeoffs\
    \ \nbetween resources used at inference time versus additional resources required\
    \ at training time.  Environmental  \nMS-2.12- 004 Verify effectiveness of carbon\
    \ capture or offset programs  for GAI training and \napplications , and address\
    \ green -washing concerns . Environmental  \nAI Actor Tasks:  AI Deployment, AI\
    \ Impact Assessment, Domain Experts, Operation and Monitoring, TEVV"
  - "opportunities, undermine their privac y, or pervasively track their activity—often\
    \ without their knowledge or \nconsent. \nThese outcomes are deeply harmful—but\
    \ they are not inevitable. Automated systems have brought about extraor-\ndinary\
    \ benefits, from technology that helps farmers grow food more efficiently and\
    \ computers that predict storm \npaths, to algorithms that can identify diseases\
    \ in patients. These tools now drive important decisions across \nsectors, while\
    \ data is helping to revolutionize global industries. Fueled by the power of American\
    \ innovation, \nthese tools hold the potential to redefine every part of our society\
    \ and make life better for everyone."
  - "Publishing, Paris . https://doi.org/10.1787/d1a8d965- en \nOpenAI  (2023) GPT-4\
    \ System Card . https://cdn.openai.com/papers/gpt -4-system -card.pdf  \nOpenAI\
    \  (2024) GPT-4 Technical Report. https://arxiv.org/pdf/2303.08774  \nPadmakumar,\
    \ V. et al. (2024) Does writing with language models reduce content diversity?\
    \  ICLR . \nhttps://arxiv.org/pdf/2309.05196  \nPark,  P.  et. al. (2024)  AI\
    \ deception: A survey of  examples, risks, and potential solutions. Patterns,\
    \ 5(5).  \narXiv . https://arxiv.org/pdf/2308.14752  \nPartnership on AI  (2023)\
    \ Building a Glossary for Synthetic Media Transparency Methods, Part 1: Indirect\
    \ \nDisclosure . https://partnershiponai.org/glossary -for-synthetic -media- transparency\
    \ -methods -part-1-\nindirect -disclosure/"
- source_sentence: What are the key components involved in ensuring data quality and
    ethical considerations in AI systems?
  sentences:
  - "(such as where significant negative impacts are imminent, severe harms are actually\
    \ occurring, or large -scale risks could occur); and broad GAI negative risks,\
    \ \nincluding: Immature safety or risk cultures related to AI and GAI design,\
    \ development and deployment, public information integrity risks, including impacts\
    \ on democratic processes, unknown long -term performance characteristics of GAI.\
    \  Information Integrity ; Dangerous , \nViolent, or Hateful Content ; CBRN \n\
    Information or Capabilities  \nGV-1.3-007 Devise a plan to halt development or\
    \ deployment of a GAI system that poses unacceptable negative risk.  CBRN Information\
    \ and Capability ; \nInformation Security ; Information \nIntegrity  \nAI Actor\
    \ Tasks: Governance and Oversight"
  - "30 MEASURE 2.2:  Evaluations involving human subjects meet applicable requirements\
    \ (including human subject protection) and are \nrepresentative of the relevant\
    \ population.  \nAction ID  Suggested Action  GAI Risks  \nMS-2.2-001 Assess and\
    \ manage statistical biases related to GAI content provenance through \ntechniques\
    \ such as re -sampling, re -weighting, or adversarial training.  Information Integrity\
    \ ; Information \nSecurity ; Harmful Bias and \nHomogenization  \nMS-2.2-002 Document\
    \ how content provenance data  is tracked  and how that data interact s \nwith\
    \  privacy and security . Consider : Anonymiz ing data to protect the privacy\
    \ of \nhuman subjects; Leverag ing privacy output filters; Remov ing any personally"
  - "Data quality; Model architecture (e.g., convolutional neural network, transformers,\
    \ etc.); Optimizatio n objectives; Training algorithms; RLHF \napproaches; Fine\
    \ -tuning or retrieval- augmented generation approaches; \nEvaluation data; Ethical\
    \ considerations; Legal and regulatory requirements.  Information Integrity ;\
    \ Harmful Bias \nand Homogenization  \nAI Actor Tasks:  AI Deployment, AI Impact\
    \ Assessment, Domain Experts, End -Users, Operation and Monitoring, TEVV  \n \n\
    MEASURE 2.10:  Privacy risk of the AI system – as identified in the MAP function\
    \ – is examined and documented.  \nAction ID  Suggested Action  GAI Risks  \n\
    MS-2.10- 001 Conduct AI red -teaming to assess issues  such as: Outputting of\
    \ training data"
model-index:
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: cosine_accuracy@1
      value: 0.8
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.99
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.99
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 1.0
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.8
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.33000000000000007
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.19799999999999998
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09999999999999998
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.8
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.99
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.99
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 1.0
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9195108324425135
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8916666666666667
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8916666666666666
      name: Cosine Map@100
    - type: dot_accuracy@1
      value: 0.8
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.99
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.99
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 1.0
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.8
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.33000000000000007
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.19799999999999998
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.09999999999999998
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.8
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.99
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.99
      name: Dot Recall@5
    - type: dot_recall@10
      value: 1.0
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.9195108324425135
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.8916666666666667
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.8916666666666666
      name: Dot Map@100
---

# SentenceTransformer based on Snowflake/snowflake-arctic-embed-m

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) <!-- at revision e2b128b9fa60c82b4585512b33e1544224ffff42 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("XicoC/midterm-finetuned-arctic")
# Run inference
sentences = [
    'What are the key components involved in ensuring data quality and ethical considerations in AI systems?',
    'Data quality; Model architecture (e.g., convolutional neural network, transformers, etc.); Optimizatio n objectives; Training algorithms; RLHF \napproaches; Fine -tuning or retrieval- augmented generation approaches; \nEvaluation data; Ethical considerations; Legal and regulatory requirements.  Information Integrity ; Harmful Bias \nand Homogenization  \nAI Actor Tasks:  AI Deployment, AI Impact Assessment, Domain Experts, End -Users, Operation and Monitoring, TEVV  \n \nMEASURE 2.10:  Privacy risk of the AI system – as identified in the MAP function – is examined and documented.  \nAction ID  Suggested Action  GAI Risks  \nMS-2.10- 001 Conduct AI red -teaming to assess issues  such as: Outputting of training data',
    '30 MEASURE 2.2:  Evaluations involving human subjects meet applicable requirements (including human subject protection) and are \nrepresentative of the relevant population.  \nAction ID  Suggested Action  GAI Risks  \nMS-2.2-001 Assess and manage statistical biases related to GAI content provenance through \ntechniques such as re -sampling, re -weighting, or adversarial training.  Information Integrity ; Information \nSecurity ; Harmful Bias and \nHomogenization  \nMS-2.2-002 Document how content provenance data  is tracked  and how that data interact s \nwith  privacy and security . Consider : Anonymiz ing data to protect the privacy of \nhuman subjects; Leverag ing privacy output filters; Remov ing any personally',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.8        |
| cosine_accuracy@3   | 0.99       |
| cosine_accuracy@5   | 0.99       |
| cosine_accuracy@10  | 1.0        |
| cosine_precision@1  | 0.8        |
| cosine_precision@3  | 0.33       |
| cosine_precision@5  | 0.198      |
| cosine_precision@10 | 0.1        |
| cosine_recall@1     | 0.8        |
| cosine_recall@3     | 0.99       |
| cosine_recall@5     | 0.99       |
| cosine_recall@10    | 1.0        |
| cosine_ndcg@10      | 0.9195     |
| cosine_mrr@10       | 0.8917     |
| **cosine_map@100**  | **0.8917** |
| dot_accuracy@1      | 0.8        |
| dot_accuracy@3      | 0.99       |
| dot_accuracy@5      | 0.99       |
| dot_accuracy@10     | 1.0        |
| dot_precision@1     | 0.8        |
| dot_precision@3     | 0.33       |
| dot_precision@5     | 0.198      |
| dot_precision@10    | 0.1        |
| dot_recall@1        | 0.8        |
| dot_recall@3        | 0.99       |
| dot_recall@5        | 0.99       |
| dot_recall@10       | 1.0        |
| dot_ndcg@10         | 0.9195     |
| dot_mrr@10          | 0.8917     |
| dot_map@100         | 0.8917     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 600 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 600 samples:
  |         | sentence_0                                                                         | sentence_1                                                                          |
  |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                              |
  | details | <ul><li>min: 13 tokens</li><li>mean: 21.67 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 132.86 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | sentence_0                                                                                                         | sentence_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
  |:-------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What is the title of the NIST publication related to Artificial Intelligence Risk Management?</code>         | <code>NIST Trustworthy and Responsible AI  <br>NIST AI 600 -1 <br>Artificial Intelligence Risk Management <br>Framework: Generative Artificial <br>Intelligence Profile <br> <br>  <br>This publication is available free of charge from:  <br>https://doi.org/10.6028/NIST.AI.600 -1</code>                                                                                                                                                                                                                                                                 |
  | <code>Where can the NIST AI 600 -1 publication be accessed for free?</code>                                        | <code>NIST Trustworthy and Responsible AI  <br>NIST AI 600 -1 <br>Artificial Intelligence Risk Management <br>Framework: Generative Artificial <br>Intelligence Profile <br> <br>  <br>This publication is available free of charge from:  <br>https://doi.org/10.6028/NIST.AI.600 -1</code>                                                                                                                                                                                                                                                                 |
  | <code>What is the title of the publication released by NIST in July 2024 regarding artificial intelligence?</code> | <code>NIST Trustworthy and Responsible AI  <br>NIST AI 600 -1 <br>Artificial Intelligence Risk Management <br>Framework: Generative Artificial <br>Intelligence Profile <br> <br>  <br>This publication is available free of charge from:  <br>https://doi.org/10.6028/NIST.AI.600 -1 <br> <br>July 2024  <br> <br> <br> <br> <br>U.S. Department of Commerce  <br>Gina M. Raimondo, Secretary <br>National Institute of Standards and Technology  <br>Laurie E. Locascio, NIST Director and Under Secretary of Commerce for Standards and Technology</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 20
- `per_device_eval_batch_size`: 20
- `num_train_epochs`: 5
- `multi_dataset_batch_sampler`: round_robin

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 20
- `per_device_eval_batch_size`: 20
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin

</details>

### Training Logs
| Epoch  | Step | cosine_map@100 |
|:------:|:----:|:--------------:|
| 1.0    | 30   | 0.8722         |
| 1.6667 | 50   | 0.8817         |
| 2.0    | 60   | 0.8867         |
| 3.0    | 90   | 0.8867         |
| 3.3333 | 100  | 0.8917         |


### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.0
- Transformers: 4.44.2
- PyTorch: 2.4.0+cu121
- Accelerate: 0.34.2
- Datasets: 2.19.2
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->