File size: 31,787 Bytes
9d4fa34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 |
---
base_model: Snowflake/snowflake-arctic-embed-m
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:600
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: How can high compute resource utilization in training GAI models
affect ecosystems?
sentences:
- "should not be used in education, work, housing, or in other contexts where the\
\ use of such surveillance \ntechnologies is likely to limit rights, opportunities,\
\ or access. Whenever possible, you should have access to \nreporting that confirms\
\ your data decisions have been respected and provides an assessment of the \n\
potential impact of surveillance technologies on your rights, opportunities, or\
\ access. \nNOTICE AND EXPLANATION"
- "Legal Disclaimer \nThe Blueprint for an AI Bill of Rights: Making Automated Systems\
\ Work for the American People is a white paper \npublished by the White House\
\ Office of Science and Technology Policy. It is intended to support the \ndevelopment\
\ of policies and practices that protect civil rights and promote democratic values\
\ in the building, \ndeployment, and governance of automated systems. \nThe Blueprint\
\ for an AI Bill of Rights is non-binding and does not constitute U.S. government\
\ policy. It \ndoes not supersede, modify, or direct an interpretation of any\
\ existing statute, regulation, policy, or \ninternational instrument. It does\
\ not constitute binding guidance for the public or Federal agencies and"
- "or stereotyping content . \n4. Data Privacy: Impacts due to l eakage and unauthorized\
\ use, disclosure , or de -anonymization of \nbiometric, health, location , or\
\ other personally identifiable information or sensitive data .7 \n5. Environmental\
\ Impacts: Impacts due to high compute resource utilization in training or \n\
operating GAI models, and related outcomes that may adversely impact ecosystems.\
\ \n6. Harmful Bias or Homogenization: Amplification and exacerbation of historical,\
\ societal, and \nsystemic biases ; performance disparities8 between sub- groups\
\ or languages , possibly due to \nnon- representative training data , that result\
\ in discrimination, amplification of biases, or"
- source_sentence: What are the potential risks associated with human-AI configuration
in GAI systems?
sentences:
- "establish approved GAI technology and service provider lists. Value Chain and\
\ Component \nIntegration \nGV-6.1-0 08 Maintain records of changes to content\
\ made by third parties to promote content \nprovenance, including sources, timestamps,\
\ metadata . Information Integrity ; Value Chain \nand Component Integration;\
\ Intellectual Property \nGV-6.1-0 09 Update and integrate due diligence processes\
\ for GAI acquisition and \nprocurement vendor assessments to include intellectual\
\ property, data privacy, security, and other risks. For example, update p rocesses\
\ \nto: Address solutions that \nmay rely on embedded GAI technologies; Address\
\ ongoing monitoring , \nassessments, and alerting, dynamic risk assessments,\
\ and real -time reporting"
- "could lead to homogenized outputs, including by amplifying any homogenization\
\ from the model used to \ngenerate the synthetic training data . \nTrustworthy\
\ AI Characteristics: Fair with Harmful Bias Managed, Valid and Reliable \n\
2.7. Human -AI Configuration \nGAI system use can involve varying risks of misconfigurations\
\ and poor interactions between a system \nand a human who is interacti ng with\
\ it. Humans bring their unique perspectives , experiences , or domain -\nspecific\
\ expertise to interactions with AI systems but may not have detailed knowledge\
\ of AI systems and \nhow they work. As a result, h uman experts may be unnecessarily\
\ “averse ” to GAI systems , and thus \ndeprive themselves or others of GAI’s\
\ beneficial uses ."
- "requests image features that are inconsistent with the stereotypes. Harmful\
\ b ias in GAI models , which \nmay stem from their training data , can also \
\ cause representational harm s or perpetuate or exacerbate \nbias based on\
\ race, gender, disability, or other protected classes . \nHarmful b ias in GAI\
\ systems can also lead to harms via disparities between how a model performs\
\ for \ndifferent subgroups or languages (e.g., an LLM may perform less well\
\ for non- English languages or \ncertain dialects ). Such disparities can contribute\
\ to discriminatory decision -making or amplification of \nexisting societal biases.\
\ In addition, GAI systems may be inappropriately trusted to perform similarly"
- source_sentence: What types of content are considered harmful biases in the context
of information security?
sentences:
- "MS-2.5-0 05 Verify GAI system training data and TEVV data provenance, and that\
\ fine -tuning \nor retrieval- augmented generation data is grounded. Information\
\ Integrity \nMS-2.5-0 06 Regularly review security and safety guardrails, especially\
\ if the GAI system is \nbeing operated in novel circumstances. This includes\
\ reviewing reasons why the \nGAI system was initially assessed as being safe\
\ to deploy. Information Security ; Dangerous , \nViolent, or Hateful Content\
\ \nAI Actor Tasks: Domain Experts, TEVV"
- "to diminished transparency or accountability for downstream users. While this\
\ is a risk for traditional AI \nsystems and some other digital technologies\
\ , the risk is exacerbated for GAI due to the scale of the \ntraining data, which\
\ may be too large for humans to vet; the difficulty of training foundation models,\
\ \nwhich leads to extensive reuse of limited numbers of models; an d the extent\
\ to which GAI may be \nintegrat ed into other devices and services. As GAI\
\ systems often involve many distinct third -party \ncomponents and data sources\
\ , it may be difficult to attribute issues in a system’s behavior to any one of\
\ \nthese sources. \nErrors in t hird-party GAI components can also have downstream\
\ impacts on accuracy and robustness ."
- "biases in the generated content. Information Security ; Harmful Bias \nand Homogenization\
\ \nMG-2.2-005 Engage in due diligence to analyze GAI output for harmful content,\
\ potential \nmisinformation , and CBRN -related or NCII content . CBRN Information\
\ or Capabilities ; \nObscene, Degrading, and/or \nAbusive Content ; Harmful Bias\
\ and \nHomogenization ; Dangerous , \nViolent, or Hateful Content"
- source_sentence: What is the focus of the paper by Padmakumar et al (2024) regarding
language models and content diversity?
sentences:
- "Content \nMS-2.12- 002 Document anticipated environmental impacts of model development,\
\ \nmaintenance, and deployment in product design decisions. Environmental \n\
MS-2.12- 003 Measure or estimate environmental impacts (e.g., energy and water\
\ \nconsumption) for training, fine tuning, and deploying models: Verify tradeoffs\
\ \nbetween resources used at inference time versus additional resources required\
\ at training time. Environmental \nMS-2.12- 004 Verify effectiveness of carbon\
\ capture or offset programs for GAI training and \napplications , and address\
\ green -washing concerns . Environmental \nAI Actor Tasks: AI Deployment, AI\
\ Impact Assessment, Domain Experts, Operation and Monitoring, TEVV"
- "opportunities, undermine their privac y, or pervasively track their activity—often\
\ without their knowledge or \nconsent. \nThese outcomes are deeply harmful—but\
\ they are not inevitable. Automated systems have brought about extraor-\ndinary\
\ benefits, from technology that helps farmers grow food more efficiently and\
\ computers that predict storm \npaths, to algorithms that can identify diseases\
\ in patients. These tools now drive important decisions across \nsectors, while\
\ data is helping to revolutionize global industries. Fueled by the power of American\
\ innovation, \nthese tools hold the potential to redefine every part of our society\
\ and make life better for everyone."
- "Publishing, Paris . https://doi.org/10.1787/d1a8d965- en \nOpenAI (2023) GPT-4\
\ System Card . https://cdn.openai.com/papers/gpt -4-system -card.pdf \nOpenAI\
\ (2024) GPT-4 Technical Report. https://arxiv.org/pdf/2303.08774 \nPadmakumar,\
\ V. et al. (2024) Does writing with language models reduce content diversity?\
\ ICLR . \nhttps://arxiv.org/pdf/2309.05196 \nPark, P. et. al. (2024) AI\
\ deception: A survey of examples, risks, and potential solutions. Patterns,\
\ 5(5). \narXiv . https://arxiv.org/pdf/2308.14752 \nPartnership on AI (2023)\
\ Building a Glossary for Synthetic Media Transparency Methods, Part 1: Indirect\
\ \nDisclosure . https://partnershiponai.org/glossary -for-synthetic -media- transparency\
\ -methods -part-1-\nindirect -disclosure/"
- source_sentence: What are the key components involved in ensuring data quality and
ethical considerations in AI systems?
sentences:
- "(such as where significant negative impacts are imminent, severe harms are actually\
\ occurring, or large -scale risks could occur); and broad GAI negative risks,\
\ \nincluding: Immature safety or risk cultures related to AI and GAI design,\
\ development and deployment, public information integrity risks, including impacts\
\ on democratic processes, unknown long -term performance characteristics of GAI.\
\ Information Integrity ; Dangerous , \nViolent, or Hateful Content ; CBRN \n\
Information or Capabilities \nGV-1.3-007 Devise a plan to halt development or\
\ deployment of a GAI system that poses unacceptable negative risk. CBRN Information\
\ and Capability ; \nInformation Security ; Information \nIntegrity \nAI Actor\
\ Tasks: Governance and Oversight"
- "30 MEASURE 2.2: Evaluations involving human subjects meet applicable requirements\
\ (including human subject protection) and are \nrepresentative of the relevant\
\ population. \nAction ID Suggested Action GAI Risks \nMS-2.2-001 Assess and\
\ manage statistical biases related to GAI content provenance through \ntechniques\
\ such as re -sampling, re -weighting, or adversarial training. Information Integrity\
\ ; Information \nSecurity ; Harmful Bias and \nHomogenization \nMS-2.2-002 Document\
\ how content provenance data is tracked and how that data interact s \nwith\
\ privacy and security . Consider : Anonymiz ing data to protect the privacy\
\ of \nhuman subjects; Leverag ing privacy output filters; Remov ing any personally"
- "Data quality; Model architecture (e.g., convolutional neural network, transformers,\
\ etc.); Optimizatio n objectives; Training algorithms; RLHF \napproaches; Fine\
\ -tuning or retrieval- augmented generation approaches; \nEvaluation data; Ethical\
\ considerations; Legal and regulatory requirements. Information Integrity ;\
\ Harmful Bias \nand Homogenization \nAI Actor Tasks: AI Deployment, AI Impact\
\ Assessment, Domain Experts, End -Users, Operation and Monitoring, TEVV \n \n\
MEASURE 2.10: Privacy risk of the AI system – as identified in the MAP function\
\ – is examined and documented. \nAction ID Suggested Action GAI Risks \n\
MS-2.10- 001 Conduct AI red -teaming to assess issues such as: Outputting of\
\ training data"
model-index:
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.8
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.99
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.99
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.33000000000000007
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19799999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09999999999999998
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.99
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.99
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9195108324425135
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8916666666666667
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8916666666666666
name: Cosine Map@100
- type: dot_accuracy@1
value: 0.8
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.99
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.99
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 1.0
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.8
name: Dot Precision@1
- type: dot_precision@3
value: 0.33000000000000007
name: Dot Precision@3
- type: dot_precision@5
value: 0.19799999999999998
name: Dot Precision@5
- type: dot_precision@10
value: 0.09999999999999998
name: Dot Precision@10
- type: dot_recall@1
value: 0.8
name: Dot Recall@1
- type: dot_recall@3
value: 0.99
name: Dot Recall@3
- type: dot_recall@5
value: 0.99
name: Dot Recall@5
- type: dot_recall@10
value: 1.0
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.9195108324425135
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.8916666666666667
name: Dot Mrr@10
- type: dot_map@100
value: 0.8916666666666666
name: Dot Map@100
---
# SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) <!-- at revision e2b128b9fa60c82b4585512b33e1544224ffff42 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("XicoC/midterm-finetuned-arctic")
# Run inference
sentences = [
'What are the key components involved in ensuring data quality and ethical considerations in AI systems?',
'Data quality; Model architecture (e.g., convolutional neural network, transformers, etc.); Optimizatio n objectives; Training algorithms; RLHF \napproaches; Fine -tuning or retrieval- augmented generation approaches; \nEvaluation data; Ethical considerations; Legal and regulatory requirements. Information Integrity ; Harmful Bias \nand Homogenization \nAI Actor Tasks: AI Deployment, AI Impact Assessment, Domain Experts, End -Users, Operation and Monitoring, TEVV \n \nMEASURE 2.10: Privacy risk of the AI system – as identified in the MAP function – is examined and documented. \nAction ID Suggested Action GAI Risks \nMS-2.10- 001 Conduct AI red -teaming to assess issues such as: Outputting of training data',
'30 MEASURE 2.2: Evaluations involving human subjects meet applicable requirements (including human subject protection) and are \nrepresentative of the relevant population. \nAction ID Suggested Action GAI Risks \nMS-2.2-001 Assess and manage statistical biases related to GAI content provenance through \ntechniques such as re -sampling, re -weighting, or adversarial training. Information Integrity ; Information \nSecurity ; Harmful Bias and \nHomogenization \nMS-2.2-002 Document how content provenance data is tracked and how that data interact s \nwith privacy and security . Consider : Anonymiz ing data to protect the privacy of \nhuman subjects; Leverag ing privacy output filters; Remov ing any personally',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.8 |
| cosine_accuracy@3 | 0.99 |
| cosine_accuracy@5 | 0.99 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.8 |
| cosine_precision@3 | 0.33 |
| cosine_precision@5 | 0.198 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 0.8 |
| cosine_recall@3 | 0.99 |
| cosine_recall@5 | 0.99 |
| cosine_recall@10 | 1.0 |
| cosine_ndcg@10 | 0.9195 |
| cosine_mrr@10 | 0.8917 |
| **cosine_map@100** | **0.8917** |
| dot_accuracy@1 | 0.8 |
| dot_accuracy@3 | 0.99 |
| dot_accuracy@5 | 0.99 |
| dot_accuracy@10 | 1.0 |
| dot_precision@1 | 0.8 |
| dot_precision@3 | 0.33 |
| dot_precision@5 | 0.198 |
| dot_precision@10 | 0.1 |
| dot_recall@1 | 0.8 |
| dot_recall@3 | 0.99 |
| dot_recall@5 | 0.99 |
| dot_recall@10 | 1.0 |
| dot_ndcg@10 | 0.9195 |
| dot_mrr@10 | 0.8917 |
| dot_map@100 | 0.8917 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 600 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 600 samples:
| | sentence_0 | sentence_1 |
|:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 13 tokens</li><li>mean: 21.67 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 132.86 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| sentence_0 | sentence_1 |
|:-------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What is the title of the NIST publication related to Artificial Intelligence Risk Management?</code> | <code>NIST Trustworthy and Responsible AI <br>NIST AI 600 -1 <br>Artificial Intelligence Risk Management <br>Framework: Generative Artificial <br>Intelligence Profile <br> <br> <br>This publication is available free of charge from: <br>https://doi.org/10.6028/NIST.AI.600 -1</code> |
| <code>Where can the NIST AI 600 -1 publication be accessed for free?</code> | <code>NIST Trustworthy and Responsible AI <br>NIST AI 600 -1 <br>Artificial Intelligence Risk Management <br>Framework: Generative Artificial <br>Intelligence Profile <br> <br> <br>This publication is available free of charge from: <br>https://doi.org/10.6028/NIST.AI.600 -1</code> |
| <code>What is the title of the publication released by NIST in July 2024 regarding artificial intelligence?</code> | <code>NIST Trustworthy and Responsible AI <br>NIST AI 600 -1 <br>Artificial Intelligence Risk Management <br>Framework: Generative Artificial <br>Intelligence Profile <br> <br> <br>This publication is available free of charge from: <br>https://doi.org/10.6028/NIST.AI.600 -1 <br> <br>July 2024 <br> <br> <br> <br> <br>U.S. Department of Commerce <br>Gina M. Raimondo, Secretary <br>National Institute of Standards and Technology <br>Laurie E. Locascio, NIST Director and Under Secretary of Commerce for Standards and Technology</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 20
- `per_device_eval_batch_size`: 20
- `num_train_epochs`: 5
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 20
- `per_device_eval_batch_size`: 20
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
| Epoch | Step | cosine_map@100 |
|:------:|:----:|:--------------:|
| 1.0 | 30 | 0.8722 |
| 1.6667 | 50 | 0.8817 |
| 2.0 | 60 | 0.8867 |
| 3.0 | 90 | 0.8867 |
| 3.3333 | 100 | 0.8917 |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.0
- Transformers: 4.44.2
- PyTorch: 2.4.0+cu121
- Accelerate: 0.34.2
- Datasets: 2.19.2
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |